Aurelien Forget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3978339/publications.pdf Version: 2024-02-01

	471477	477281
1,970	17	29
citations	h-index	g-index
33	33	3232
docs citations	times ranked	citing authors
	citations 33	1,97017citationsh-index3333

#	Article	IF	CITATIONS
1	From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic Reorganization of Porous Polymer Networks. Journal of the American Chemical Society, 2008, 130, 13333-13337.	13.7	512
2	Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 28511-28521.	8.0	464
3	Discovering Cell-Adhesion Peptides in Tissue Engineering: Beyond RGD. Trends in Biotechnology, 2018, 36, 372-383.	9.3	194
4	Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules, 2021, 22, 1027-1052.	5.4	138
5	Templateâ€Free Tuning of Nanopores in Carbonaceous Polymers through Ionothermal Synthesis. Advanced Materials, 2009, 21, 897-901.	21.0	120
6	Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via α-helix to β-sheet switch in secondary structure. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12887-12892.	7.1	91
7	Mechanically Tunable Bioink for 3D Bioprinting of Human Cells. Advanced Healthcare Materials, 2017, 6, 1700255.	7.6	86
8	Mechanically Tailored Agarose Hydrogels through Molecular Alloying with β â€ 5 heet Polysaccharides. Macromolecular Rapid Communications, 2015, 36, 196-203.	3.9	40
9	Nonwoven Carboxylated Agarose-Based Fiber Meshes with Antimicrobial Properties. Biomacromolecules, 2016, 17, 4021-4026.	5.4	36
10	Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness. Bioengineering, 2020, 7, 141.	3.5	30
11	Unravelling a Direct Role for Polysaccharide βâ€Strands in the Higher Order Structure of Physical Hydrogels. Angewandte Chemie - International Edition, 2017, 56, 4603-4607.	13.8	27
12	RGDSP functionalized carboxylated agarose as extrudable carriers for chondrocyte delivery. Materials Science and Engineering C, 2019, 99, 103-111.	7.3	26
13	Extrusion-Based 3D Bioprinting of Gradients of Stiffness, Cell Density, and Immobilized Peptide Using Thermogelling Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 2192-2197.	5.2	26
14	Architecture-inspired paradigm for 3D bioprinting of vessel-like structures using extrudable carboxylated agarose hydrogels. Emergent Materials, 2019, 2, 233-243.	5.7	25
15	Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezo ⁺ Population of Circulating CD11b ⁺ /CD115 ⁺ Monocytes. Advanced Materials, 2019, 31, e1808050.	21.0	23
16	Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting. Advanced Science, 2022, 9, e2103469.	11.2	21
17	Oxygen-Releasing Coatings for Improved Tissue Preservation. ACS Biomaterials Science and Engineering, 2017, 3, 2384-2390.	5.2	19
18	Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation.	5.4	17

² Biomaterials Science, 2017, 5, 828-836.

AURELIEN FORGET

#	Article	IF	CITATIONS
19	IGF-2 coated porous collagen microwells for the culture of pancreatic islets. Journal of Materials Chemistry B, 2017, 5, 220-225.	5.8	13
20	Surface Functionality as a Means to Impact Polymer Nanoparticle Size and Structure. Langmuir, 2013, 29, 4092-4095.	3.5	9
21	Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne–azide cycloaddition. Biointerphases, 2021, 16, 011001.	1.6	9
22	Unravelling a Direct Role for Polysaccharide βâ€ 5 trands in the Higher Order Structure of Physical Hydrogels. Angewandte Chemie, 2017, 129, 4674-4678.	2.0	8
23	Oxygen-permeable microwell device maintains islet mass and integrity during shipping. Endocrine Connections, 2018, 7, 490-503.	1.9	8
24	Going beyond RGD: screening of a cell-adhesion peptide library in 3D cell culture. Biomedical Materials (Bristol), 2020, 15, 055033.	3.3	8
25	Facile preparation of tissue engineering scaffolds with pore size gradients using the muesli effect and their application to cell spheroid encapsulation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2495-2504.	3.4	8
26	Hydrogels with Cell Adhesion Peptideâ€Decorated Channel Walls for Cell Guidance. Macromolecular Rapid Communications, 2020, 41, 2000295.	3.9	7
27	Biotin-Avidin-Mediated Capture of Microspheres on Polymer Fibers. Molecules, 2019, 24, 2036.	3.8	2
28	Transparent, Pliable, Antimicrobial Hydrogels for Ocular Wound Dressings. Applied Sciences (Switzerland), 2020, 10, 7548.	2.5	2
29	Replica moulded poly(dimethylsiloxane) microwell arrays induce localized endothelial cell immobilization for coculture with pancreatic islets. Biointerphases, 2019, 14, 011002.	1.6	1
30	Macromol. Rapid Commun. 2/2015. Macromolecular Rapid Communications, 2015, 36, 195-195.	3.9	0
31	Biomaterials Based Strategies for Engineering Tumor Microenvironment. Advanced Structured Materials, 2017, , 301-361.	0.5	0
32	Stable Angiogenesis: Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezoâ€1 + Population of Circulating CD11b + /CD115 + Monocytes (Adv. Mater. 21/2019). Advanced Materials, 2019, 31, 1970150.	21.0	0