
Shaida A Andrabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3978276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 10) Tf 50 742 1,430
2	Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the United States of America, 2006, 103, 18314-18319.	7.1	655
3	Poly(ADP-ribose) (PAR) polymer is a death signal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18308-18313.	7.1	572
4	Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Human Molecular Genetics, 2007, 16, 223-232.	2.9	535
5	Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science, 2016, 353, .	12.6	521
6	Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Annals of Neurology, 2006, 60, 557-569.	5.3	479
7	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	12.4	444
8	Parkinâ€independent mitophagy requires <scp>D</scp> rp1 and maintains the integrity of mammalian heart and brain. EMBO Journal, 2014, 33, 2798-2813.	7.8	361
9	Poly(ADP-Ribose) (PAR) Binding to Apoptosis-Inducing Factor Is Critical for PAR Polymerase-1–Dependent Cell Death (Parthanatos). Science Signaling, 2011, 4, ra20.	3.6	360
10	Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science, 2018, 362, .	12.6	317
11	Mitochondrial and Nuclear Cross Talk in Cell Death. Annals of the New York Academy of Sciences, 2008, 1147, 233-241.	3.8	284
12	Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for antiâ€apoptotic effects of melatonin. FASEB Journal, 2004, 18, 869-871.	0.5	278
13	A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science, 2016, 354, .	12.6	266
14	Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10209-10214.	7.1	253
15	Ribosomal Protein s15 Phosphorylation Mediates LRRK2 Neurodegeneration in Parkinson's Disease. Cell, 2014, 157, 472-485.	28.9	239
16	Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proceedings of the United States of America, 2015, 112, 11696-11701.	7.1	207
17	lduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14103-14108.	7.1	205
18	PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell Maintenance, and Lung Metastasis. Cancer Research, 2016, 76, 4430-4442.	0.9	201

Shaida A Andrabi

#	Article	IF	CITATIONS
19	Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nature Medicine, 2011, 17, 692-699.	30.7	190
20	<scp>M</scp> sp1/ <scp>ATAD</scp> 1 maintains mitochondrial function by facilitating the degradation of mislocalized tailâ€anchored proteins. EMBO Journal, 2014, 33, 1548-1564.	7.8	172
21	Oxyresveratrol (trans-2,3′,4,5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Research, 2004, 1017, 98-107.	2.2	118
22	Protein phosphatase 2A regulates life and death decisions via Akt in a context-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19011-19016.	7.1	94
23	Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons. ENeuro, 2016, 3, ENEURO.0183-16.2016.	1.9	87
24	Inclusion Body Formation and Neurodegeneration Are Parkin Independent in a Mouse Model of Â-Synucleinopathy. Journal of Neuroscience, 2006, 26, 3685-3696.	3.6	86
25	SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs. Frontiers in Neuroscience, 2018, 12, 799.	2.8	61
26	Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy, 2021, 17, 1330-1348.	9.1	58
27	Resistance to MPTP-Neurotoxicity in α-Synuclein Knockout Mice Is Complemented by Human α-Synuclein and Associated with Increased β-Synuclein and Akt Activation. PLoS ONE, 2011, 6, e16706.	2.5	57
28	Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis. Redox Biology, 2019, 26, 101307.	9.0	56
29	Contributions of poly(ADPâ€ribose) polymeraseâ€1 and â€2 to nuclear translocation of apoptosisâ€inducing factor and injury from focal cerebral ischemia. Journal of Neurochemistry, 2010, 113, 1012-1022.	3.9	51
30	Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons. Stem Cell Reports, 2020, 15, 629-645.	4.8	48
31	Blood–brain barrier permeability to the neuroprotectant oxyresveratrol. Neuroscience Letters, 2006, 393, 113-118.	2.1	46
32	LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. Journal of Chemical Neuroanatomy, 2016, 76, 90-97.	2.1	36
33	DISC1 regulates lactate metabolism in astrocytes: implications for psychiatric disorders. Translational Psychiatry, 2018, 8, 76.	4.8	34
34	Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death and Disease, 2021, 12, 659.	6.3	34
35	PARIS farnesylation prevents neurodegeneration in models of Parkinson's disease. Science Translational Medicine, 2021, 13, .	12.4	30
36	Generation and Characterization of SULT4A1 Mutant Mouse Models. Drug Metabolism and Disposition, 2018, 46, 41-45.	3.3	22

3

Shaida A Andrabi

#	Article	IF	CITATIONS
37	Thorase variants are associated with defects in glutamatergic neurotransmission that can be rescued by Perampanel. Science Translational Medicine, 2017, 9, .	12.4	20
38	Augmentation of poly(ADP-ribose) polymerase-dependent neuronal cell death by acidosis. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1982-1993.	4.3	20
39	High-Content Genome-Wide RNAi Screen Reveals <i>CCR3</i> as a Key Mediator of Neuronal Cell Death. ENeuro, 2016, 3, ENEURO.0185-16.2016.	1.9	15
40	SULT4A1 Protects Against Oxidative-Stress Induced Mitochondrial Dysfunction in Neuronal Cells. Drug Metabolism and Disposition, 2019, 47, 949-953.	3.3	13
41	AMPA Receptor Surface Expression Is Regulated by S-Nitrosylation of Thorase and Transnitrosylation of NSF. Cell Reports, 2020, 33, 108329.	6.4	12
42	Quantitative mass spectrometric analysis of the mouse cerebral cortex after ischemic stroke. PLoS ONE, 2020, 15, e0231978.	2.5	11
43	The AAA + ATPase Thorase is neuroprotective against ischemic injury. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1836-1848.	4.3	10
44	Nitric oxide applications prior and simultaneous to potentially excitotoxic NMDA-evoked calcium transients: Cell death or survival. Brain Research, 2005, 1060, 1-15.	2.2	9
45	Neuronal and Cerebrovascular Complications in Coronavirus Disease 2019. Frontiers in Pharmacology, 2020, 11, 570031.	3.5	8
46	PARP-1 activation leads to cytosolic accumulation of TDP-43 in neurons. Neurochemistry International, 2021, 148, 105077.	3.8	5
47	Patched1 haploinsufficiency severely impacts intermediary metabolism in the skin of Ptch1+/â^'/ODC transgenic mice. Scientific Reports, 2019, 9, 13072.	3.3	2
48	Utilizing SULT4A1 Mutant Mouse Models to Characterize SULT4A1. FASEB Journal, 2018, 32, 833.12.	0.5	0