
Joan M Cabot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3978181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D printed microfluidic devices: enablers and barriers. Lab on A Chip, 2016, 16, 1993-2013.	6.0	816
2	Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Analytical Chemistry, 2017, 89, 3858-3866.	6.5	300
3	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016–2018). Electrophoresis, 2019, 40, 17-39.	2.4	113
4	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis, 2017, 38, 33-59.	2.4	87
5	Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond–Polymer Composite Using Low-Cost Fused Deposition Modeling Printer. ACS Applied Materials & Interfaces, 2019, 11, 4353-4363.	8.0	73
6	Novel Instrument for Automated p <i>K</i> _a Determination by Internal Standard Capillary Electrophoresis. Analytical Chemistry, 2015, 87, 6165-6172.	6.5	42
7	Thread based electrofluidic platform for direct metabolite analysis in complex samples. Analytica Chimica Acta, 2018, 1000, 283-292.	5.4	41
8	Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond. Scientific Reports, 2017, 7, 15109.	3.3	39
9	Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS Combinatorial Science, 2019, 21, 229-240.	3.8	38
10	Fast high-throughput method for the determination of acidity constants by capillary electrophoresis. II. Acidic internal standards. Journal of Chromatography A, 2010, 1217, 8340-8345.	3.7	37
11	Electrophoretic separations on paper: Past, present, and future-A review. Analytica Chimica Acta, 2017, 985, 7-23.	5.4	37
12	Determination of acidity constants by the capillary electrophoresis internal standard method. IV. Polyprotic compounds. Journal of Chromatography A, 2013, 1279, 108-116.	3.7	29
13	Internal Standard Capillary Electrophoresis as a High-Throughput Method for p <i>K</i> _a Determination in Drug Discovery and Development. ACS Combinatorial Science, 2014, 16, 518-525.	3.8	29
14	Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method. Electrophoresis, 2014, 35, 3564-3569.	2.4	25
15	Fibre-based electrofluidics on low cost versatile 3D printed platforms for solute delivery, separations and diagnostics; from small molecules to intact cells. Analyst, The, 2016, 141, 6422-6431.	3.5	25
16	lsotachophoretic Fluorescence in Situ Hybridization of Intact Bacterial Cells. Analytical Chemistry, 2017, 89, 6513-6520.	6.5	20
17	Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures. Scientific Reports, 2020, 10, 7120.	3.3	15
18	Thread-based isotachophoresis for DNA extraction and purification from biological samples. Lab on A Chip, 2021, 21, 2565-2573.	6.0	13

Joan M Cabot

#	Article	IF	CITATIONS
19	Characterisation of graphene fibres and graphene coated fibres using capacitively coupled contactless conductivity detector. Analyst, The, 2016, 141, 2774-2782.	3.5	12
20	Thread-based isoelectric focusing coupled with desorption electrospray ionization mass spectrometry. Analyst, The, 2020, 145, 6928-6936.	3.5	12
21	In Silico Screening of Two-Dimensional Separation Selectivity for Ion Chromatography × Capillary Electrophoresis Separation of Low-Molecular-Mass Organic Acids. Analytical Chemistry, 2017, 89, 8808-8815.	6.5	8
22	Stalk cell polar ion transport provide for bladderâ€based salinity tolerance in <i>Chenopodium quinoa</i> . New Phytologist, 2022, 235, 1822-1835.	7.3	8
23	Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. Lab on A Chip, 2021, 21, 3338-3351.	6.0	7
24	Determination of the aqueous pKa of very insoluble drugs by capillary electrophoresis: Internal standards for methanol-water extrapolation. Journal of Chromatography A, 2022, 1665, 462795.	3.7	6
25	Selective capillary electrophoresis separation of mono and divalent cations within a high-surface area-to-volume ratio multi-lumen capillary. Analytica Chimica Acta, 2019, 1051, 41-48.	5.4	5
26	High throughput determination log Po/w/pKa/log Do/w of drugs by combination of UHPLC and CE methods. ADMET and DMPK, 2014, 2, .	2.1	5
27	Rapid screening of inorganic and organic anions in liquid byâ€products from hydrothermal treatment of biomass by capillary electrophoresis. Electrophoresis, 2018, 39, 1014-1020.	2.4	4
28	Tunable flow rate in textile-based materials utilising composite fibres. Journal of the Textile Institute, 2021, 112, 568-577.	1.9	0