
Reinhard Kunze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977950/publications.pdf Version: 2024-02-01

REINHARD KUNZE

#	Article	IF	CITATIONS
1	Priming of Arabidopsis resistance to herbivory by insect egg deposition depends on the plant's developmental stage. Journal of Experimental Botany, 2022, 73, 4996-5015.	4.8	3
2	Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Scientific Reports, 2020, 10, 16281.	3.3	17
3	Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. Frontiers in Plant Science, 2020, 11, 619589.	3.6	20
4	Plant responses to insect eggs are not induced by eggâ€essociated microbes, but by a secretion attached to the eggs. Plant, Cell and Environment, 2020, 43, 1815-1826.	5.7	20
5	The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC Plant Biology, 2019, 19, 338.	3.6	3
6	Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acidâ€dependent manner. Plant, Cell and Environment, 2019, 42, 1019-1032.	5.7	44
7	Maize Transposable Elements <i>Ac</i> / <i>Ds</i> as Insertion Mutagenesis Tools in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1139-1145.	1.8	22
8	Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. Mycorrhiza, 2018, 28, 93-100.	2.8	28
9	Gene Essentiality Analyzed by <i>In Vivo</i> Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of <i>Candida albicans</i> . MBio, 2018, 9, .	4.1	110
10	Divergent N Deficiency-Dependent Senescence and Transcriptome Response in Developmentally Old and Young Brassica napus Leaves. Frontiers in Plant Science, 2018, 9, 48.	3.6	13
11	Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Molecular Phylogenetics and Evolution, 2017, 109, 367-374.	2.7	6
12	Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS ONE, 2017, 12, e0174062.	2.5	43
13	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	10.4	388
14	Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling―or "insect eggs― exhibits different transcriptomic responses to herbivory. Scientific Reports, 2016, 6, 28544.	3.3	22
15	DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent. Molecular Plant, 2016, 9, 1142-1155.	8.3	39
16	The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation. Plant Signaling and Behavior, 2016, 11, e1176819.	2.4	37
17	Genome size shifts: karyotype evolution in <i><scp>C</scp>repis</i> section <i><scp>N</scp>eglectoides</i> (<scp>A</scp> steraceae). Plant Biology, 2015, 17, 775-786.	3.8	11
18	Nitrate-dependent control of shoot K homeostasis by NPF7.3/NRT1.5 and SKOR in Arabidopsis. Plant Physiology, 2015, 169, pp.01152.2015.	4.8	83

REINHARD KUNZE

#	Article	IF	CITATIONS
19	Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Plant Science, 2015, 233, 174-185.	3.6	36
20	A phospholipid uptake system in the model plant Arabidopsis thaliana. Nature Communications, 2015, 6, 7649.	12.8	71
21	Molecular Biology of Maize Ac/Ds Elements: An Overview. Methods in Molecular Biology, 2013, 1057, 59-82.	0.9	32
22	Egg Laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana Affects Subsequent Performance of the Larvae. PLoS ONE, 2013, 8, e59661.	2.5	55
23	A Hyperactive Transposase of the Maize Transposable Element <i>Activator</i> (<i>Ac</i>). Genetics, 2012, 191, 747-756.	2.9	28
24	Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast. BMC Plant Biology, 2012, 12, 54.	3.6	58
25	Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves. Journal of Plant Physiology, 2011, 168, 1311-1319.	3.5	25
26	Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence. Plant Physiology, 2006, 141, 776-792.	4.8	527
27	UPS1 and UPS2 from Arabidopsis Mediate High Affinity Transport of Uracil and 5-Fluorouracil. Journal of Biological Chemistry, 2004, 279, 44817-44824.	3.4	55
28	Plant membrane proteome databases. Plant Physiology and Biochemistry, 2004, 42, 1023-1034.	5.8	32
29	The Role of Δ1-Pyrroline-5-Carboxylate Dehydrogenase in Proline Degradation[W]. Plant Cell, 2004, 16, 3413-3425.	6.6	228
30	Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis. BMC Plant Biology, 2003, 3, 1.	3.6	76
31	ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins. Plant Physiology, 2003, 131, 16-26.	4.8	624
32	A Novel Superfamily of Transporters for Allantoin and Other Oxo Derivatives of Nitrogen Heterocyclic Compounds in Arabidopsis. Plant Cell, 2002, 14, 847-856.	6.6	100
33	Metabolic Engineering of Plants: The Role of Membrane Transport. Metabolic Engineering, 2002, 4, 57-66.	7.0	36
34	Structure and expression of the Zea mays mutS-homologs Mus1 and Mus2. Theoretical and Applied Genetics, 2002, 105, 423-430.	3.6	19
35	An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant Journal, 2002, 32, 685-699.	5.7	165
36	Regulation of <i>Activator/Dissociation</i> Transposition by Replication and DNA Methylation. Genetics, 2001, 157, 1723-1733.	2.9	72

Reinhard Kunze

#	Article	IF	CITATIONS
37	Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nature Genetics, 2000, 26, 187-190.	21.4	94
38	A Highly Conserved Domain of the Maize Activator Transposase Is Involved in Dimerization. Plant Cell, 2000, 12, 211.	6.6	1
39	A Highly Conserved Domain of the Maize Activator Transposase Is Involved in Dimerization. Plant Cell, 2000, 12, 211-223.	6.6	69
40	Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Molecular Genetics and Genomics, 1999, 262, 633-642.	2.4	44
41	Transposase binding site methylation in the epigenetically inactivatedAcderivativeDs y. Plant Journal, 1998, 13, 577-582.	5.7	16
42	Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Molecular Genetics and Genomics, 1997, 254, 219-230.	2.4	65
43	A sensitive, quick and semi-quantitative LacZ assay for the two-hybrid system. Trends in Genetics, 1996, 12, 449-450.	6.7	11
44	Methylation pattern of Activator transposase binding sites in maize endosperm Plant Cell, 1996, 8, 747-758.	6.6	63
45	Binding sites for maize nuclear proteins in the subterminal regions of the transposable element. Molecular Genetics and Genomics, 1996, 251, 428.	2.4	0
46	Chapter 34 Expression of Plant Proteins in Baculoviral and Bacterial Systems. Methods in Cell Biology, 1995, 50, 461-479.	1.1	1
47	The binding motifs forAc transposase are absolutely required for excision ofDs1 in maize. Molecular Genetics and Genomics, 1995, 248, 527-534.	2.4	15
48	Somatic and germinal activities of maize Activator (Ac) transposase mutants in transgenic tobacco. Plant Journal, 1995, 8, 45-54.	5.7	15
49	One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. Plant Journal, 1995, 7, 441-451.	5.7	40
50	In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant Journal, 1994, 5, 705-714.	5.7	62
51	Dominant transposition-deficient mutants of maize Activator (Ac) transposase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7094-7098.	7.1	49
52	High rates of Ac/Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6085-6089.	7.1	59
53	Detection and abundance of mRNA and protein encoded by transposable element Activator (Ac) in maize. Molecular Genetics and Genomics, 1991, 225, 186-192.	2.4	51

54 Structure and Function of the Maize Transposable Element Activator (AC)., 1991,, 285-298.

3

REINHARD KUNZE

#	Article	IF	CITATIONS
55	Overproduction of the protein encoded by the maize transposable element Ac in insect cells by a baculovirus vector. Molecular Genetics and Genomics, 1988, 214, 373-378.	2.4	27
56	DNA methylation of the maize transposable element Ac interferes with its transcription. Molecular Genetics and Genomics, 1988, 214, 325-327.	2.4	55
57	Transposable Elements Ac and Ds at the Shrunken, Waxy, and Alcohol Dehydrogenase 1 Loci in Zea mays L Cold Spring Harbor Symposia on Quantitative Biology, 1984, 49, 329-338.	1.1	15