Dana C Dolinoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13056-13061.	3.3	1,239
2	Maternal Genistein Alters Coat Color and Protects A vy Mouse Offspring from Obesity by Modifying the Fetal Epigenome. Environmental Health Perspectives, 2006, 114, 567-572.	2.8	877
3	Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 2012, 23, 853-859.	1.9	608
4	Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 2007, 23, 297-307.	1.3	456
5	Maternal methyl supplements increase offspring DNA methylation atAxin fused. Genesis, 2006, 44, 401-406.	0.8	450
6	Environmental epigenomics in human health and disease. Environmental and Molecular Mutagenesis, 2008, 49, 4-8.	0.9	305
7	Timing is everything. Epigenetics, 2011, 6, 791-797.	1.3	283
8	Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. Environmental Health Perspectives, 2017, 125, 511-526.	2.8	243
9	Genome-Wide DNA Methylation Differences Between Late-Onset Alzheimer's Disease and Cognitively Normal Controls in Human Frontal Cortex. Journal of Alzheimer's Disease, 2012, 29, 571-588.	1.2	231
10	Metastable Epialleles, Imprinting, and the Fetal Origins of Adult Diseases. Pediatric Research, 2007, 61, 30R-37R.	1.1	225
11	The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutrition Reviews, 2008, 66, S7-S11.	2.6	212
12	Low dose effects of bisphenol A. Endocrine Disruptors (Austin, Tex), 2013, 1, e26490.	1.1	174
13	Alzheimer's Disease and Environmental Exposure to Lead: The Epidemiologic Evidence and Potential Role of Epigenetics. Current Alzheimer Research, 2012, 9, 563-573.	0.7	163
14	Genome-wide methylation and expression differences in HPV(+) and HPV(-) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics, 2011, 6, 777-787.	1.3	145
15	Dose-Dependent Incidence of Hepatic Tumors in Adult Mice following Perinatal Exposure to Bisphenol A. Environmental Health Perspectives, 2014, 122, 485-491.	2.8	142
16	Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environmental and Molecular Mutagenesis, 2012, 53, 334-342.	0.9	131
17	In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere, 2015, 124, 54-60.	4.2	114
18	Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice. Toxicological Sciences, 2016, 151, 324-333.	1.4	113

#	Article	IF	CITATIONS
19	Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics, 2013, 5, 487-500.	1.0	105
20	Mapping for prevention: GIS models for directing childhood lead poisoning prevention programs Environmental Health Perspectives, 2002, 110, 947-953.	2.8	99
21	Cancer Susceptibility: Epigenetic Manifestation of Environmental Exposures. Cancer Journal (Sudbury,) Tj ETQq1 3	0.78431 1.0	.4 ŗgBT /Ov∈
22	Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB Journal, 2013, 27, 1784-1792.	0.2	93
23	Adaptive radiationâ€induced epigenetic alterations mitigated by antioxidants. FASEB Journal, 2013, 27, 665-671.	0.2	90
24	Epigenetics: Relevance and Implications for Public Health. Annual Review of Public Health, 2014, 35, 105-122.	7.6	90
25	Early pregnancy exposure to endocrine disrupting chemical mixtures are associated with inflammatory changes in maternal and neonatal circulation. Scientific Reports, 2019, 9, 5422.	1.6	87
26	Mercury biomarkers and DNA methylation among michigan dental professionals. Environmental and Molecular Mutagenesis, 2013, 54, 195-203.	0.9	83
27	Variable histone modifications at the A ^{vy} metastable epiallele. Epigenetics, 2010, 5, 637-644.	1.3	82
28	The NIEHS TaRGET II Consortium and environmental epigenomics. Nature Biotechnology, 2018, 36, 225-227.	9.4	79
29	Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open, 2019, 9, e030427.	0.8	76
30	Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans. Journal of Biochemical and Molecular Toxicology, 2013, 27, 116-123.	1.4	75
31	Epigenetics for ecotoxicologists. Environmental Toxicology and Chemistry, 2012, 31, 221-227.	2.2	70
32	Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome. BMC Genomics, 2014, 15, 30.	1.2	70
33	Hepatic Lipid Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of Nonalcoholic Liver Disease. Environmental Health Perspectives, 2017, 125, 087005.	2.8	70
34	Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics, 2018, 13, 301-309.	1.3	70
35	Perinatal Lead (Pb) Exposure Results in Sex-Specific Effects on Food Intake, Fat, Weight, and Insulin Response across the Murine Life-Course. PLoS ONE, 2014, 9, e104273.	1.1	66
36	LRpath analysis reveals common pathways dysregulated via DNA methylation across cancer types. BMC Genomics, 2012, 13, 526.	1.2	65

#	Article	IF	CITATIONS
37	GIS Modeling of Air Toxics Releases from TRI-Reporting and Non-TRI-Reporting Facilities: Impacts for Environmental Justice. Environmental Health Perspectives, 2004, 112, 1717-1724.	2.8	63
38	Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt. Environmental Health, 2013, 12, 33.	1.7	63
39	Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environmental Epigenetics, 2015, 1, dvv006.	0.9	62
40	Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics, 2019, 14, 504-521.	1.3	59
41	Impact of Gestational Bisphenol A on Oxidative Stress and Free Fatty Acids: Human Association and Interspecies Animal Testing Studies. Endocrinology, 2015, 156, 911-922.	1.4	58
42	The role of environmental exposures and the epigenome in health and disease. Environmental and Molecular Mutagenesis, 2020, 61, 176-192.	0.9	57
43	Bisphenol Aâ€associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environmental and Molecular Mutagenesis, 2014, 55, 184-195.	0.9	56
44	First trimester maternal exposures to endocrine disrupting chemicals and metals and fetal size in the Michigan Mother–Infant Pairs study. Journal of Developmental Origins of Health and Disease, 2019, 10, 447-458.	0.7	51
45	Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. Journal of Immunotoxicology, 2014, 11, 205-212.	0.9	50
46	Quality control and statistical modeling for environmental epigenetics: A study on <i>in utero</i> lead exposure and DNA methylation at birth. Epigenetics, 2015, 10, 19-30.	1.3	49
47	Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A. Epigenetics, 2016, 11, 489-500.	1.3	48
48	Perinatal lead (Pb) exposure results in sex and tissueâ€dependent adult DNA methylation alterations in murine IAP transposons. Environmental and Molecular Mutagenesis, 2017, 58, 540-550.	0.9	48
49	Comprehensive Analysis of DNA Methylation in Head and Neck Squamous Cell Carcinoma Indicates Differences by Survival and Clinicopathologic Characteristics. PLoS ONE, 2013, 8, e54742.	1.1	46
50	Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics, 2014, 9, 934-941.	1.3	45
51	Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence. Environmental Epigenetics, 2016, 2, dvw018.	0.9	44
52	Epigenetics and the maintenance ofÂdevelopmental plasticity: extending the signalling theory framework. Biological Reviews, 2018, 93, 1323-1338.	4.7	44
53	LINE-1 and <i>EPAS1</i> DNA methylation associations with high-altitude exposure. Epigenetics, 2019, 14, 1-15.	1.3	44
54	Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-Wide DNA Hydroxymethylation at Imprinted Loci in Mouse Blood. Environmental Health Perspectives, 2018, 126, 077006.	2.8	42

#	Article	IF	CITATIONS
55	Urinary bisphenol A concentrations in girls from rural and urban Egypt: a pilot study. Environmental Health, 2012, 11, 20.	1.7	41
56	Delivery type not associated with global methylation at birth. Clinical Epigenetics, 2012, 4, 8.	1.8	40
57	Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reproductive Toxicology, 2017, 68, 154-163.	1.3	40
58	Emerging Issues in Public Health Genomics. Annual Review of Genomics and Human Genetics, 2014, 15, 461-480.	2.5	39
59	Sexually Dimorphic Effects of Early-Life Exposures to Endocrine Disruptors: Sex-Specific Epigenetic Reprogramming as a Potential Mechanism. Current Environmental Health Reports, 2017, 4, 426-438.	3.2	38
60	Novel Epigenetic Biomarkers Mediating Bisphenol A Exposure and Metabolic Phenotypes in Female Mice. Endocrinology, 2017, 158, 31-40.	1.4	37
61	An expression microarray approach for the identification of metastable epialleles in the mouse genome. Epigenetics, 2011, 6, 1105-1113.	1.3	36
62	Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas. Epigenetics, 2012, 7, 883-891.	1.3	34
63	Lipid metabolism is associated with developmental epigenetic programming. Scientific Reports, 2016, 6, 34857.	1.6	33
64	Perinatal Lead (Pb) Exposure and Cortical Neuron-Specific DNA Methylation in Male Mice. Genes, 2019, 10, 274.	1.0	33
65	Maternal lipid levels across pregnancy impact the umbilical cord blood lipidome and infant birth weight. Scientific Reports, 2020, 10, 14209.	1.6	33
66	DNA Methylation Screening and Analysis. Methods in Molecular Biology, 2012, 889, 385-406.	0.4	31
67	Phthalate Exposures, DNA Methylation and Adiposity in Mexican Children Through Adolescence. Frontiers in Public Health, 2019, 7, 162.	1.3	31
68	Assessing human health risk to endocrine disrupting chemicals: a focus on prenatal exposures and oxidative stress. Endocrine Disruptors (Austin, Tex), 2015, 3, e1069916.	1.1	30
69	DNA methylation, insulin resistance and second-generation antipsychotics in bipolar disorder. Epigenomics, 2015, 7, 343-352.	1.0	29
70	Mono-2-ethylhexyl phthalate disrupts neurulation and modifies the embryonic redox environment and gene expression. Reproductive Toxicology, 2016, 63, 32-48.	1.3	28
71	Environmental Deflection: The Impact of Toxicant Exposures on the Aging Epigenome. Toxicological Sciences, 2017, 156, kfx005.	1.4	28
72	Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons. BMC Genomics, 2013, 14, 48.	1.2	27

#	Article	IF	CITATIONS
73	Geneâ€specific <scp>DNA</scp> methylation may mediate atypical antipsychoticâ€induced insulin resistance. Bipolar Disorders, 2016, 18, 423-432.	1.1	27
74	Longitudinal Metabolic Impacts of Perinatal Exposure to Phthalates and Phthalate Mixtures in Mice. Endocrinology, 2019, 160, 1613-1630.	1.4	27
75	New insights and updated guidelines for epigenome-wide association studies. Neuroepigenetics, 2015, 1, 14-19.	2.8	26
76	Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. Environmental Research, 2016, 149, 247-258.	3.7	26
77	<i>Stat3</i> is a candidate epigenetic biomarker of perinatal Bisphenol A exposure associated with murine hepatic tumors with implications for human health. Epigenetics, 2015, 10, 1099-1110.	1.3	25
78	Age-related epigenome-wide DNA methylation and hydroxymethylation in longitudinal mouse blood. Epigenetics, 2018, 13, 779-792.	1.3	25
79	DNA Methylation Changes Are Associated With an Incremental Ascent to High Altitude. Frontiers in Genetics, 2019, 10, 1062.	1.1	25
80	Neonatal Lead (Pb) Exposure and DNA Methylation Profiles in Dried Bloodspots. International Journal of Environmental Research and Public Health, 2020, 17, 6775.	1.2	25
81	Maternal Exposure to Environmental Disruptors and Sexually Dimorphic Changes in Maternal and Neonatal Oxidative Stress. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 492-505.	1.8	24
82	Single-Cell Analysis of the Gene Expression Effects of Developmental Lead (Pb) Exposure on the Mouse Hippocampus. Toxicological Sciences, 2020, 176, 396-409.	1.4	24
83	The psychology of â€~regrettable substitutions': examining consumer judgements of Bisphenol A and its alternatives. Health, Risk and Society, 2014, 16, 649-666.	0.9	23
84	Patterns of cellular and HPV 16 methylation as biomarkers for cervical neoplasia. Journal of Virological Methods, 2012, 184, 84-92.	1.0	22
85	Prenatal exposures and DNA methylation in newborns: a pilot study in Durban, South Africa. Environmental Sciences: Processes and Impacts, 2016, 18, 908-917.	1.7	21
86	Mono-2-ethylhexyl phthalate (MEHP) alters histiotrophic nutrition pathways and epigenetic processes in the developing conceptus. Journal of Nutritional Biochemistry, 2016, 27, 211-218.	1.9	20
87	Association of Maternal-Neonatal Steroids With Early Pregnancy Endocrine Disrupting Chemicals and Pregnancy Outcomes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 665-687.	1.8	20
88	Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood. Environmental Epigenetics, 2020, 6, dvaa021.	0.9	20
89	Concordance in hippocampal and fecal <scp><i>Nr3c1</i></scp> methylation is moderated by maternal behavior in the mouse. Ecology and Evolution, 2012, 2, 3123-3131.	0.8	19
90	Early life social and ecological determinants of global DNA methylation in wild spotted hyenas. Molecular Ecology, 2019, 28, 3799-3812.	2.0	19

#	Article	IF	CITATIONS
91	Bisphenol A at concentrations relevant to human exposure enhances histamine and cysteinyl leukotriene release from bone marrow-derived mast cells. Journal of Immunotoxicology, 2014, 11, 84-89.	0.9	18
92	Environmental Contaminants and Child Development. Child Development Perspectives, 2016, 10, 228-233.	2.1	18
93	Trimester-Specific Associations of Prenatal Lead Exposure With Infant Cord Blood DNA Methylation at Birth. Epigenetics Insights, 2020, 13, 251686572093866.	0.6	18
94	Prenatal Lead (Pb) Exposure and Peripheral Blood DNA Methylation (5mC) and Hydroxymethylation (5hmC) in Mexican Adolescents from the ELEMENT Birth Cohort. Environmental Health Perspectives, 2021, 129, 67002.	2.8	18
95	Accelerometer-measured Physical Activity, Reproductive Hormones, and DNA Methylation. Medicine and Science in Sports and Exercise, 2020, 52, 598-607.	0.2	17
96	Using GIS-Based Approaches to Support Research on Neurotoxicants and Other Children's Environmental Health Threats. NeuroToxicology, 2005, 26, 223-228.	1.4	16
97	Association of blood leukocyte DNA methylation at LINE-1 and growth-related candidate genes with pubertal onset and progression. Epigenetics, 2018, 13, 1222-1233.	1.3	16
98	Tissue- and Sex-Specific DNA Methylation Changes in Mice Perinatally Exposed to Lead (Pb). Frontiers in Genetics, 2020, 11, 840.	1.1	16
99	Adolescent sleep timing and dietary patterns in relation to DNA methylation of core circadian genes: a pilot study of Mexican youth. Epigenetics, 2021, 16, 894-907.	1.3	15
100	Sex-Specific Programming of Cardiac DNA Methylation by Developmental Phthalate Exposure. Epigenetics Insights, 2020, 13, 251686572093997.	0.6	15
101	Tissue and sex-specific programming of DNA methylation by perinatal lead exposure: implications for environmental epigenetics studies. Epigenetics, 2021, 16, 1102-1122.	1.3	15
102	DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environmental Epigenetics, 2021, 7, dvab005.	0.9	15
103	Inhibition of proteolysis in histiotrophic nutrition pathways alters DNA methylation and one-carbon metabolism in the organogenesis-stage rat conceptus. Journal of Nutritional Biochemistry, 2013, 24, 1479-1487.	1.9	14
104	Genome-Wide Epigenetic Signatures of Adaptive Developmental Plasticity in the Andes. Genome Biology and Evolution, 2021, 13, .	1.1	14
105	Short- and long-term effects of perinatal phthalate exposures on metabolic pathways in the mouse liver. Environmental Epigenetics, 2020, 6, dvaa017.	0.9	14
106	Perinatal Bisphenol A Exposure and Reprogramming of Imprinted Gene Expression in the Adult Mouse Brain. Frontiers in Genetics, 2019, 10, 951.	1.1	13
107	Genomic tools for environmental epigenetics and implications for public health. Current Opinion in Toxicology, 2019, 18, 27-33.	2.6	13
108	Neonatal bloodspot DNA methylation patterns are associated with childhood weight status in the Healthy Families Project. Pediatric Research, 2019, 85, 848-855.	1.1	13

#	Article	IF	CITATIONS
109	Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation. Environment International, 2021, 155, 106587.	4.8	13
110	Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers. Drug Metabolism and Disposition, 2016, 44, 1061-1065.	1.7	12
111	Sex-Specific Alterations in Cardiac DNA Methylation in Adult Mice by Perinatal Lead Exposure. International Journal of Environmental Research and Public Health, 2021, 18, 577.	1.2	12
112	Longitudinal effects of developmental bisphenol A, variable diet, and physical activity on age-related methylation in blood. Environmental Epigenetics, 2018, 4, dvy017.	0.9	11
113	Epigenomic Indicators of Age in African Americans. Hereditary Genetics: Current Research, 2014, 03, .	0.1	10
114	Epigenomeâ€wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A. Environmental and Molecular Mutagenesis, 2016, 57, 435-446.	0.9	10
115	Sleep duration and fragmentation in relation to leukocyte DNA methylation in adolescents. Sleep, 2019, 42, .	0.6	10
116	Perinatal DEHP exposure induces sex- and tissue-specific DNA methylation changes in both juvenile and adult mice. Environmental Epigenetics, 2021, 7, dvab004.	0.9	10
117	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	4.6	10
118	Prenatal Exposures to Common Phthalates and Prevalent Phthalate Alternatives and Infant DNA Methylation at Birth. Frontiers in Genetics, 2022, 13, 793278.	1.1	9
119	Introduction: The Use of Animals Models to Advance Epigenetic Science. ILAR Journal, 2012, 53, 227-231.	1.8	8
120	Characterization of the mouse white adipose tissue redox environment and associations with perinatal environmental exposures to bisphenol A and high-fat diets. Journal of Nutritional Biochemistry, 2019, 66, 86-97.	1.9	7
121	Maternal lipodome across pregnancy is associated with the neonatal DNA methylome. Epigenomics, 2020, 12, 2077-2092.	1.0	6
122	Gestational exposure to high fat diets and bisphenol A alters metabolic outcomes in dams and offspring, but produces hepatic steatosis only in dams. Chemosphere, 2022, 286, 131645.	4.2	5
123	Paradoxical whole genome DNA methylation dynamics of 5'aza-deoxycytidine in chronic low-dose exposure in mice. Epigenetics, 2021, 16, 209-227.	1.3	4
124	Maternal and neonatal one-carbon metabolites and the epigenome-wide infant response. Journal of Nutritional Biochemistry, 2022, 101, 108938.	1.9	4
125	Dietary exposures, epigenetics and pubertal tempo. Environmental Epigenetics, 2019, 5, dvz002.	0.9	3
126	Integrative Analysis of Gene-Specific DNA Methylation and Untargeted Metabolomics Data from the ELEMENT Cohort. Epigenetics Insights, 2020, 13, 251686572097788.	0.6	3

#	Article	IF	CITATIONS
127	Complex Phenotypes: Epigenetic Manifestation of Environmental Exposures. Epigenetics and Human Health, 2013, , 77-97.	0.2	2
128	Early-Life Exposures and the Epigenome: Interactions between Nutrients and the Environment. Oxidative Stress and Disease, 2014, , 3-52.	0.3	0
129	Exposure to phthalates in relation to sleep duration and social jetlag among adolescent boys and girls in Mexico City. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
130	Epigenetic Gene Regulation: Linking Early Development Environment to Adult Disease.Dana Dolinoy, Ph.D Biology of Reproduction, 2009, 81, 113-113.	1.2	0
131	Perinatal bisphenol A exposure promotes hyperactivity with corresponding hormonal responses. FASEB Journal, 2013, 27, 1073.10.	0.2	0
132	Toxicoepigenetics and Effects on Life Course Disease Susceptibility. , 0, , 439-472.		0
133	Department Chairs Weigh In: Environmental Health Education Is More Essential Than Ever. American Journal of Public Health, 2022, 112, 75-76.	1.5	0