Tarja Kokkola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977381/publications.pdf

Version: 2024-02-01

53 papers 1,440 citations

304743

22

h-index

36 g-index

58 all docs 58 docs citations

58 times ranked 2786 citing authors

#	Article	IF	CITATIONS
1	Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study. Cell Reports Medicine, 2022, 3, 100477.	6.5	39
2	Oxygen-18 and carbon-13 isotopes in eCO2 and erythrocytes carbonic anhydrase activity of Finnish prediabetic population. Journal of Breath Research, 2021, 15, 021001.	3.0	1
3	GFAP as a biomarker in frontotemporal dementia and primary psychiatric disorders: diagnostic and prognostic performance. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1305-1312.	1.9	25
4	Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT: An IMI DIRECT Study. Diabetes, 2021, 70, 2092-2106.	0.6	17
5	Serum GFAP and NfL levels in benign relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 56, 103280.	2.0	14
6	Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2021, 44, 511-518.	8.6	16
7	A scaffold replacement approach towards new sirtuin 2 inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115231.	3.0	6
8	Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study. Genome Medicine, 2020, 12, 109.	8.2	8
9	A reference map of potential determinants for the human serum metabolome. Nature, 2020, 588, 135-140.	27.8	230
10	Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine, 2020, 58, 102932.	6.1	3
11	Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Medicine, 2020, 17, e1003149.	8.4	47
12	The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes: an IMI DIRECT study. Diabetologia, 2020, 63, 744-756.	6.3	12
13	Impact of structurally diverse BET inhibitors on SIRT1. Gene, 2020, 741, 144558.	2.2	4
14	Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes: An IMI-DIRECT study. PLoS ONE, 2020, 15, e0242360.	2.5	7
15	Title is missing!. , 2020, 17, e1003149.		O
16	Title is missing!. , 2020, 17, e1003149.		0
17	Title is missing!. , 2020, 17, e1003149.		О
18	Title is missing!. , 2020, 17, e1003149.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 17, e1003149.		O
20	Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia, 2019, 62, 1601-1615.	6.3	22
21	Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration. Journal of Hepatology, 2019, 71, 594-602.	3.7	23
22	Suppressed heat shock protein response in the kidney of exerciseâ€trained diabetic rats. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1808-1817.	2.9	11
23	Structural properties for selective and efficient l-type amino acid transporter 1 (LAT1) mediated cellular uptake. International Journal of Pharmaceutics, 2018, 544, 91-99.	5.2	19
24	Strigolactone GR24 and pinosylvin attenuate adipogenesis and inflammation of white adipocytes. Biochemical and Biophysical Research Communications, 2018, 499, 164-169.	2.1	17
25	Strigolactone GR24 upregulates Nrf2 target genes and may protect against oxidative stress in skeletal muscle. F1000Research, 2018, 7, 1459.	1.6	1
26	Strigolactone GR24 upregulates target genes of the cytoprotective transcription factor Nrf2 in skeletal muscle. F1000Research, 2018, 7, 1459.	1.6	2
27	Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Scientific Reports, 2017, 7, 17606.	3.3	24
28	Nâ€Acylethanolamines Bind to SIRT6. ChemBioChem, 2016, 17, 77-81.	2.6	34
29	Simvastatin induces insulin resistance in L6 skeletal muscle myotubes by suppressing insulin signaling, GLUT4 expression and GSK- $3\hat{l}^2$ phosphorylation. Biochemical and Biophysical Research Communications, 2016, 480, 194-200.	2.1	31
30	Potent and selective N-(4-sulfamoylphenyl)thiourea-based GPR55 agonists. European Journal of Medicinal Chemistry, 2016, 107, 119-132.	5. 5	18
31	BET Inhibition Upregulates SIRT1 and Alleviates Inflammatory Responses. ChemBioChem, 2015, 16, 1997-2001.	2.6	21
32	Virtual screening approach of sirtuin inhibitors results in two new scaffolds. European Journal of Pharmaceutical Sciences, 2015, 76, 27-32.	4.0	16
33	Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment. Chemical Research in Toxicology, 2015, 28, 1926-1935.	3.3	9
34	Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells. PLoS ONE, 2015, 10, e0142902.	2.5	39
35	Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biology, 2014, 3, 25-28.	9.0	86
36	Chroman-4-one- and Chromone-Based Sirtuin 2 Inhibitors with Antiproliferative Properties in Cancer Cells. Journal of Medicinal Chemistry, 2014, 57, 9870-9888.	6.4	102

#	Article	IF	CITATIONS
37	Studying SIRT6 regulation using H3K56 based substrate and small molecules. European Journal of Pharmaceutical Sciences, 2014, 63, 71-76.	4.0	46
38	AROS has a contextâ€dependent effect on SIRT1. FEBS Letters, 2014, 588, 1523-1528.	2.8	13
39	Screen of Pseudopeptidic Inhibitors of Human Sirtuins $1\hat{a}\in$ 3: Two Lead Compounds with Antiproliferative Effects in Cancer Cells. Journal of Medicinal Chemistry, 2013, 56, 6681-6695.	6.4	36
40	Somatostatin receptor 5 is palmitoylated by the interacting ZDHHC5 palmitoyltransferase. FEBS Letters, 2011, 585, 2665-2670.	2.8	27
41	Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity. Molecular and Cellular Biochemistry, 2011, 351, 125-131.	3.1	8
42	An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radical Research, 2010, 44, 1203-1215.	3.3	56
43	Inverse agonist exposure enhances ligand binding and G protein activation of the human MT1 melatonin receptor, but leads to receptor down-regulation. Journal of Pineal Research, 2007, 43, 255-262.	7.4	22
44	Identification of WIN55212-3 as a competitive neutral antagonist of the human cannabinoid CB2 receptor. British Journal of Pharmacology, 2005, 145, 636-645.	5.4	42
45	The functional role of cysteines adjacent to the NRY motif of the human MT1 melatonin receptor. Journal of Pineal Research, 2005, 39, 1-11.	7.4	23
46	S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biology, 2005, 6, 21.	3.0	41
47	Important amino acids for the function of the human MT1 melatonin receptor. Biochemical Pharmacology, 2003, 65, 1463-1471.	4.4	36
48	Mutagenesis of Human Mel1aMelatonin Receptor Expressed in Yeast Reveals Domains Important for Receptor Function. Biochemical and Biophysical Research Communications, 1998, 249, 531-536.	2.1	49
49	TCDD alters melatonin metabolism in fish hepatocytes. Pathophysiology, 1998, 5, 99.	2.2	0
50	Melatonin receptor genes. Annals of Medicine, 1998, 30, 88-94.	3.8	25
51	A rhodopsin-based model for melatonin recognition at its G protein-coupled receptor. European Journal of Pharmacology, 1996, 304, 173-183.	3.5	61
52	Mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces circulating melatonin levels in the rat. Toxicology, 1996, 107, 85-97.	4.2	24
53	Cholinergic signaling in the rat pineal gland. Cellular and Molecular Neurobiology, 1995, 15, 177-192.	3.3	23