Carsten Krebs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977056/publications.pdf Version: 2024-02-01

CADSTEN KDERS

#	Article	IF	CITATIONS
1	Non-Heme Fe(Ⅳ)–Oxo Intermediates. Accounts of Chemical Research, 2007, 40, 484-492.	7.6	866
2	The First Direct Characterization of a High-Valent Iron Intermediate in the Reaction of an α-Ketoglutarate-Dependent Dioxygenase:  A High-Spin Fe(IV) Complex in Taurine/α-Ketoglutarate Dioxygenase (TauD) from Escherichia coli. Biochemistry, 2003, 42, 7497-7508.	1.2	654
3	lscU as a Scaffold for Ironâ^'Sulfur Cluster Biosynthesis:Â Sequential Assembly of [2Fe-2S] and [4Fe-4S] Clusters in IscUâ€. Biochemistry, 2000, 39, 7856-7862.	1.2	419
4	Evidence for Hydrogen Abstraction from C1 of Taurine by the High-Spin Fe(IV) Intermediate Detected during Oxygen Activation by Taurine:α-Ketoglutarate Dioxygenase (TauD). Journal of the American Chemical Society, 2003, 125, 13008-13009.	6.6	373
5	Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nature Chemical Biology, 2007, 3, 113-116.	3.9	305
6	Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14738-14743.	3.3	289
7	EXAFS Spectroscopic Evidence for an Feâ•O Unit in the Fe(IV) Intermediate Observed during Oxygen Activation by Taurine:α-Ketoglutarate Dioxygenase. Journal of the American Chemical Society, 2004, 126, 8108-8109.	6.6	282
8	IscA, an Alternate Scaffold for Feâ´'S Cluster Biosynthesis. Biochemistry, 2001, 40, 14069-14080.	1.2	233
9	A Radically Different Mechanism for <i>S</i> -Adenosylmethionine–Dependent Methyltransferases. Science, 2011, 332, 604-607.	6.0	230
10	Formation of a Pterin Radical in the Reaction of the Heme Domain of Inducible Nitric Oxide Synthase with Oxygenâ€. Biochemistry, 1999, 38, 15689-15696.	1.2	229
11	Human calprotectin is an iron-sequestering host-defense protein. Nature Chemical Biology, 2015, 11, 765-771.	3.9	218
12	Substrate-Triggered Formation and Remarkable Stability of the Câ^'H Bond-Cleaving Chloroferryl Intermediate in the Aliphatic Halogenase, SyrB2. Biochemistry, 2009, 48, 4331-4343.	1.2	212
13	Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17723-17728.	3.3	206
14	Elucidation of the Fe(iv)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature, 2013, 499, 320-323.	13.7	192
15	Spectroscopic and Computational Evaluation of the Structure of the High-Spin Fe(IV)-Oxo Intermediates in Taurine: α-Ketoglutarate Dioxygenase fromEscherichia coliand Its His99Ala Ligand Variant. Journal of the American Chemical Society, 2007, 129, 6168-6179.	6.6	191
16	A Manganese(IV)/Iron(III) Cofactor in Chlamydia trachomatis Ribonucleotide Reductase. Science, 2007, 316, 1188-1191.	6.0	186
17	A Short Fe-Fe Distance in Peroxodiferric Ferritin: Control of Fe Substrate Versus Cofactor Decay?. Science, 2000, 287, 122-125.	6.0	184
18	Diphthamide biosynthesis requires an organic radical generated by an iron–sulphur enzyme. Nature, 2010, 465, 891-896.	13.7	180

#	Article	IF	CITATIONS
19	Mechanism of Taurine: αâ€Ketoglutarate Dioxygenase (TauD) from Escherichia coli. European Journal of Inorganic Chemistry, 2005, 2005, 4245-4254.	1.0	178
20	Direct Spectroscopic and Kinetic Evidence for the Involvement of a Peroxodiferric Intermediate during the Ferroxidase Reaction in Fast Ferritin Mineralization. Biochemistry, 1998, 37, 9871-9876.	1.2	174
21	Direct Spectroscopic Evidence for a High-Spin Fe(IV) Intermediate in Tyrosine Hydroxylase. Journal of the American Chemical Society, 2007, 129, 11334-11335.	6.6	164
22	Kinetic Dissection of the Catalytic Mechanism of Taurine:α-Ketoglutarate Dioxygenase (TauD) from Escherichia coli. Biochemistry, 2005, 44, 8138-8147.	1.2	152
23	Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 2017, 14, 443-449.	9.0	150
24	The Ferroxidase Reaction of Ferritin Reveals a Diferric μ-1,2 Bridging Peroxide Intermediate in Common with Other O2-Activating Non-Heme Diiron Proteinsâ€. Biochemistry, 1999, 38, 5290-5295.	1.2	147
25	Engineering the Diiron Site ofEscherichia coliRibonucleotide Reductase Protein R2 to Accumulate an Intermediate Similar to Hperoxo, the Putative Peroxodiiron(III) Complex from the Methane Monooxygenase Catalytic Cycle. Journal of the American Chemical Society, 1998, 120, 1094-1095.	6.6	144
26	Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the α-Ketoglutarate-Dependent Halogenase CytC3 from <i>Streptomyces</i> . Journal of the American Chemical Society, 2007, 129, 13408-13409.	6.6	140
27	Enzymatic C–H activation by metal–superoxo intermediates. Current Opinion in Chemical Biology, 2007, 11, 151-158.	2.8	140
28	Coordination of Adenosylmethionine to a Unique Iron Site of the [4Fe-4S] of Pyruvate Formate-Lyase Activating Enzyme:  A Mössbauer Spectroscopic Study. Journal of the American Chemical Society, 2002, 124, 912-913.	6.6	139
29	Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit ofEscherichiacoliRibonucleotide Reductase. 1. Evidence for a Transient Tryptophan Radical. Journal of the American Chemical Society, 2000, 122, 12195-12206.	6.6	138
30	Detection of Formate, Rather than Carbon Monoxide, As the Stoichiometric Coproduct in Conversion of Fatty Aldehydes to Alkanes by a Cyanobacterial Aldehyde Decarbonylase. Journal of the American Chemical Society, 2011, 133, 3316-3319.	6.6	136
31	Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nature Chemical Biology, 2008, 4, 758-765.	3.9	134
32	A Role for Iron in an Ancient Carbonic Anhydrase. Journal of Biological Chemistry, 2004, 279, 6683-6687.	1.6	133
33	Escherichia coliLipoyl Synthase Binds Two Distinct [4Feâ^4S] Clusters per Polypeptideâ€. Biochemistry, 2004, 43, 11770-11781.	1.2	133
34	NifS-Mediated Assembly of [4Feâ~'4S] Clusters in the N- and C-Terminal Domains of the NifU Scaffold Protein. Biochemistry, 2005, 44, 12955-12969.	1.2	131
35	Stalking intermediates in oxygen activation by iron enzymes: Motivation and method. Journal of Inorganic Biochemistry, 2006, 100, 586-605.	1.5	131
36	Evidence for Only Oxygenative Cleavage of Aldehydes to Alk(a/e)nes and Formate by Cyanobacterial Aldehyde Decarbonylases. Biochemistry, 2012, 51, 7908-7916.	1.2	130

#	Article	IF	CITATIONS
37	Rapid Freeze-Quench57Fe Mössbauer Spectroscopy: Monitoring Changes of an Iron-Containing Active Site during a Biochemical Reaction. Inorganic Chemistry, 2005, 44, 742-757.	1.9	126
38	Mechanism of the C5 Stereoinversion Reaction in the Biosynthesis of Carbapenem Antibiotics. Science, 2014, 343, 1140-1144.	6.0	122
39	Conversion of Fatty Aldehydes to Alka(e)nes and Formate by a Cyanobacterial Aldehyde Decarbonylase: Cryptic Redox by an Unusual Dimetal Oxygenase. Journal of the American Chemical Society, 2011, 133, 6158-6161.	6.6	120
40	Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nature Chemical Biology, 2014, 10, 209-215.	3.9	113
41	Evidence for C-H cleavage by an iron-superoxide complex in the glycol cleavage reaction catalyzed by myo-inositol oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6130-6135.	3.3	111
42	In Vitro Characterization of AtsB, a Radical SAM Formylglycine-Generating Enzyme That Contains Three [4Fe-4S] Clusters. Biochemistry, 2008, 47, 7523-7538.	1.2	107
43	Substrate activation by iron superoxo intermediates. Current Opinion in Structural Biology, 2010, 20, 673-683.	2.6	107
44	Mössbauer spectroscopy of Fe/S proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1395-1405.	1.9	102
45	The biosynthesis of methanobactin. Science, 2018, 359, 1411-1416.	6.0	101
46	Exchange and Double-Exchange Phenomena in Linear Homo- and Heterotrinuclear Nickel(II,III,IV) Complexes Containing Six μ2-Phenolato or μ2-Thiophenolato Bridging Ligands. Journal of the American Chemical Society, 1996, 118, 12376-12390.	6.6	100
47	Spectroscopic Evidence for the Two C–H-Cleaving Intermediates of <i>Aspergillus nidulans</i> Isopenicillin <i>N</i> Synthase. Journal of the American Chemical Society, 2016, 138, 8862-8874.	6.6	99
48	RlmN and AtsB as Models for the Overproduction and Characterization of Radical SAM Proteins. Methods in Enzymology, 2012, 516, 125-152.	0.4	98
49	Two Distinct Mechanisms for C–C Desaturation by Iron(II)- and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance. Journal of the American Chemical Society, 2018, 140, 7116-7126.	6.6	98
50	Neelaredoxin, an Iron-binding Protein from the Syphilis Spirochete, Treponema pallidum, Is a Superoxide Reductase. Journal of Biological Chemistry, 2000, 275, 28439-28448.	1.6	97
51	Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase. Journal of the American Chemical Society, 2017, 139, 13830-13836.	6.6	97
52	Characterization of the Cofactor Composition of Escherichia coli Biotin Synthase. Biochemistry, 2004, 43, 2007-2021.	1.2	96
53	Evidence for Basic Ferryls in Cytochromes P450. Journal of the American Chemical Society, 2006, 128, 11471-11474.	6.6	93
54	A catalytic di-heme <i>bis</i> -Fe(IV) intermediate, alternative to an Fe(IV)=O porphyrin radical. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8597-8600.	3.3	89

#	Article	IF	CITATIONS
55	Electronic Structure Analysis of the Oxygenâ€Activation Mechanism by Fe ^{II} ―and αâ€Ketoglutarate (αKG)â€Dependent Dioxygenases. Chemistry - A European Journal, 2012, 18, 6555-6567.	1.7	89
56	Dioxygen Reactivity of Mononuclear Heme and Copper Components Yielding A High-Spin Hemeâ^'Peroxoâ~'Cu Complex. Journal of the American Chemical Society, 2001, 123, 6183-6184.	6.6	88
57	Formation of Fe(III)Fe(IV) Species from the Reaction between a Diiron(II) Complex and Dioxygen: Relevance to Ribonucleotide Reductase Intermediate X. Journal of the American Chemical Society, 1999, 121, 9893-9894.	6.6	87
58	Conversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme:Â Mössbauer Characterization and Implications for Mechanism. Journal of the American Chemical Society, 2000, 122, 12497-12506.	6.6	86
59	CD and MCD of CytC3 and Taurine Dioxygenase:  Role of the Facial Triad in α-KG-Dependent Oxygenases. Journal of the American Chemical Society, 2007, 129, 14224-14231.	6.6	86
60	Evidence for Two Ferryl Species in Chloroperoxidase Compound II. Journal of the American Chemical Society, 2006, 128, 6147-6153.	6.6	82
61	A Long-Lived, Substrate-Hydroxylating Peroxodiiron(III/III) Intermediate in the Amine Oxygenase, AurF, from <i>Streptomyces thioluteus</i> . Journal of the American Chemical Society, 2009, 131, 13608-13609.	6.6	81
62	Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like â€~di-iron-carboxylate' proteins. Current Opinion in Chemical Biology, 2011, 15, 291-303.	2.8	81
63	A Manganese(IV)/Iron(IV) Intermediate in Assembly of the Manganese(IV)/Iron(III) Cofactor of <i>Chlamydia trachomatis</i> Ribonucleotide Reductase. Biochemistry, 2007, 46, 8709-8716.	1.2	78
64	Experimental Correlation of Substrate Position with Reaction Outcome in the Aliphatic Halogenase, SyrB2. Journal of the American Chemical Society, 2015, 137, 6912-6919.	6.6	78
65	Evidence for a High-Spin Fe(IV) Species in the Catalytic Cycle of a Bacterial Phenylalanine Hydroxylase. Biochemistry, 2011, 50, 1928-1933.	1.2	77
66	Spectroscopic and Electrochemical Characterization of the Iron–Sulfur and Cobalamin Cofactors of TsrM, an Unusual Radical <i>S</i> -Adenosylmethionine Methylase. Journal of the American Chemical Society, 2016, 138, 3416-3426.	6.6	77
67	Characterization of RimO, a New Member of the Methylthiotransferase Subclass of the Radical SAM Superfamily. Biochemistry, 2009, 48, 10162-10174.	1.2	76
68	A Consensus Mechanism for Radical SAM-Dependent Dehydrogenation? BtrN Contains Two [4Fe-4S] Clusters. Biochemistry, 2010, 49, 3783-3785.	1.2	76
69	Evidence for the slow reaction of hypoxiaâ€inducible factor prolyl hydroxylase 2 with oxygen. FEBS Journal, 2010, 277, 4089-4099.	2.2	75
70	Rational Reprogramming of the R2 Subunit ofEscherichia coliRibonucleotide Reductase into a Self-Hydroxylating Monooxygenase. Journal of the American Chemical Society, 2001, 123, 7017-7030.	6.6	73
71	myo-Inositol oxygenase: a radical new pathway for O ₂ and C–H activation at a nonheme diiron cluster. Dalton Transactions, 2009, , 905-914.	1.6	73
72	Generation of a Mixed-Valent Fe(III)Fe(IV) Form of Intermediate Q in the Reaction Cycle of Soluble Methane Monooxygenase, an Analog of Intermediate X in Ribonucleotide Reductase R2 Assembly. Journal of the American Chemical Society, 1998, 120, 2190-2191.	6.6	72

#	Article	IF	CITATIONS
73	Stoichiometric Production of Hydrogen Peroxide and Parallel Formation of Ferric Multimers through Decay of the Diferricâ^Peroxo Complex, the First Detectable Intermediate in Ferritin Mineralizationâ€. Biochemistry, 2002, 41, 13435-13443.	1.2	72
74	Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science, 2021, 373, 236-241.	6.0	71
75	Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit ofEscherichiacoliRibonucleotide Reductase. 2. Evidence for and Consequences of Blocked Electron Transfer in the W48F Variant. Journal of the American Chemical Society, 2000, 122, 12207-12219.	6.6	70
76	Four-electron oxidation of <i>p</i> -hydroxylaminobenzoate to <i>p</i> -nitrobenzoate by a peroxodiferric complex in AurF from <i>Streptomyces thioluteus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15722-15727.	3.3	70
77	Evidence that the Fosfomycin-Producing Epoxidase, HppE, Is a Non–Heme-Iron Peroxidase. Science, 2013, 342, 991-995.	6.0	69
78	Mechanisms of 2-Oxoglutarate-Dependent Oxygenases: The Hydroxylation Paradigm and Beyond. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 95-122.	0.8	69
79	Substrate-Triggered Addition of Dioxygen to the Diferrous Cofactor of Aldehyde-Deformylating Oxygenase to Form a Diferric-Peroxide Intermediate. Journal of the American Chemical Society, 2013, 135, 15801-15812.	6.6	68
80	Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity. Journal of the American Chemical Society, 2016, 138, 5110-5122.	6.6	68
81	Valence-Delocalized Diiron(II,III) Cores Supported by Carboxylate-Only Bridging Ligands. Journal of the American Chemical Society, 2000, 122, 5000-5001.	6.6	67
82	Spectroscopic, Steady-State Kinetic, and Mechanistic Characterization of the Radical SAM Enzyme QueE, Which Catalyzes a Complex Cyclization Reaction in the Biosynthesis of 7-Deazapurines. Biochemistry, 2013, 52, 188-198.	1.2	67
83	Cryoreduction of the NO-Adduct of Taurine:α-Ketoglutarate Dioxygenase (TauD) Yields an Elusive {FeNO} ⁸ Species. Journal of the American Chemical Society, 2010, 132, 4739-4751.	6.6	66
84	SufR Coordinates Two [4Fe-4S]2+, 1+ Clusters and Functions as a Transcriptional Repressor of the sufBCDS Operon and an Autoregulator of sufR in Cyanobacteria. Journal of Biological Chemistry, 2007, 282, 31909-31919.	1.6	65
85	Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism. Journal of the American Chemical Society, 2015, 137, 11695-11709.	6.6	61
86	Exchange Coupling in an Isostructural Series of Face-Sharing Bioctahedral Complexes [LMII(1¼-X)3MIIL]BPh4(M = Mn, Fe, Co, Ni, Zn; X = Cl, Br; L = 1,4,7-Trimethyl-1,4,7-triazacyclononane). Inorganic Chemistry, 1997, 36, 2834-2843.	1.9	60
87	Cfr and RlmN Contain a Single [4Fe-4S] Cluster, which Directs Two Distinct Reactivities for <i>S</i> -Adenosylmethionine: Methyl Transfer by S _N 2 Displacement and Radical Generation. Journal of the American Chemical Society, 2011, 133, 19586-19589.	6.6	60
88	The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Current Opinion in Structural Biology, 2008, 18, 650-657.	2.6	59
89	Escherichia coliQuinolinate Synthetase Does Indeed Harbor a [4Fe-4S] Cluster. Journal of the American Chemical Society, 2005, 127, 7310-7311.	6.6	58
90	A Coupled Dinuclear Iron Cluster that Is Perturbed by Substrate Binding in myo-Inositol Oxygenase. Biochemistry, 2006, 45, 5393-5401.	1.2	58

#	Article	IF	CITATIONS
91	Functional Mimic of Dioxygen-Activating Centers in Non-Heme Diiron Enzymes:Â Mechanistic Implications of Paramagnetic Intermediates in the Reactions between Diiron(II) Complexes and Dioxygen. Journal of the American Chemical Society, 2002, 124, 3993-4007.	6.6	57
92	The Active Form of Chlamydia trachomatis Ribonucleotide Reductase R2 Protein Contains a Heterodinuclear Mn(IV)/Fe(III) Cluster with S = 1 Ground State. Journal of the American Chemical Society, 2007, 129, 7504-7505.	6.6	57
93	A Triangular Iron(III) Complex Potentially Relevant to Iron(III)â€Binding Sites in Ferreascidin. Chemistry - A European Journal, 1997, 3, 193-201.	1.7	55
94	Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia trachomatis Ribonucleotide Reductase by Extended X-ray Absorption Fine Structure Spectroscopy and Density Functional Theory Calculations. Journal of the American Chemical Society, 2008, 130, 15022-15027.	6.6	55
95	Function of the Diiron Cluster of <i>Escherichia coli</i> Class la Ribonucleotide Reductase in Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2013, 135, 8585-8593.	6.6	55
96	Unusual Synthetic Pathway for an {Fe(NO) ₂ } ⁹ Dinitrosyl Iron Complex (DNIC) and Insight into DNIC Electronic Structure via Nuclear Resonance Vibrational Spectroscopy. Inorganic Chemistry, 2016, 55, 5485-5501.	1.9	55
97	Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF. Journal of the American Chemical Society, 2017, 139, 7062-7070.	6.6	55
98	Highly Variable π-Bonding in the Interaction of Iron(II) Porphyrinates with Nitrite. Journal of the American Chemical Society, 2000, 122, 10795-10804.	6.6	54
99	YfaE, a Ferredoxin Involved in Diferric-Tyrosyl Radical Maintenance in <i>Escherichia coli</i> Ribonucleotide Reductase. Biochemistry, 2007, 46, 11577-11588.	1.2	54
100	Further Characterization of Cys-Type and Ser-Type Anaerobic Sulfatase Maturating Enzymes Suggests a Commonality in the Mechanism of Catalysis. Biochemistry, 2013, 52, 2874-2887.	1.2	54
101	The COMBREX Project: Design, Methodology, and Initial Results. PLoS Biology, 2013, 11, e1001638.	2.6	54
102	Ability of Tetrahydrobiopterin Analogues to Support Catalysis by Inducible Nitric Oxide Synthase:Â Formation of a Pterin Radical Is Required for Enzyme Activityâ€. Biochemistry, 2003, 42, 13287-13303.	1.2	53
103	Escherichia coli L-Serine Deaminase Requires a [4Fe-4S] Cluster in Catalysis. Journal of Biological Chemistry, 2004, 279, 32418-32425.	1.6	52
104	Oxygen Activation by a Mixed-Valent, Diiron(II/III) Cluster in the Glycol Cleavage Reaction Catalyzed by myo-Inositol Oxygenase. Biochemistry, 2006, 45, 5402-5412.	1.2	52
105	Formation and Function of the Manganese(IV)/Iron(III) Cofactor in <i>Chlamydia trachomatis</i> Ribonucleotide Reductase. Biochemistry, 2008, 47, 13736-13744.	1.2	52
106	Metal-free class le ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10022-10027.	3.3	49
107	A Paramagnetic Copper(III) Complex Containing an Octahedral CullIS6 Coordination Polyhedron. Angewandte Chemie - International Edition, 1999, 38, 359-361.	7.2	48
108	Structural Characterization of the Peroxodiiron(III) Intermediate Generated during Oxygen Activation by the W48A/D84E Variant of Ribonucleotide Reductase Protein R2 fromEscherichia coliâ€. Biochemistry, 2003, 42, 13269-13279.	1.2	48

#	Article	IF	CITATIONS
109	Organophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18874-18879.	3.3	48
110	Branched Activation- and Catalysis-Specific Pathways for Electron Relay to the Manganese/Iron Cofactor in Ribonucleotide Reductase from <i>Chlamydia trachomatis</i> . Biochemistry, 2008, 47, 8477-8484.	1.2	47
111	Evidence for a Catalytically and Kinetically Competent Enzyme–Substrate Cross-Linked Intermediate in Catalysis by Lipoyl Synthase. Biochemistry, 2014, 53, 4557-4572.	1.2	47
112	Aromatic C–F Hydroxylation by Nonheme Iron(IV)–Oxo Complexes: Structural, Spectroscopic, and Mechanistic Investigations. Journal of the American Chemical Society, 2016, 138, 12791-12802.	6.6	47
113	Ground Spin State Variation in Carboxylate-Bridged Tetranuclear [Fe2Mn2O2]8+ Cores and a Comparison with Their [Fe4O2]8+ and [Mn4O2]8+ Congeners. European Journal of Inorganic Chemistry, 2003, 2003, 541-555.	1.0	46
114	Identification of FX in the Heliobacterial Reaction Center as a [4Fe-4S] Cluster with an S = 3/2 Ground Spin State. Biochemistry, 2006, 45, 6756-6764.	1.2	45
115	Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase. Journal of Biological Chemistry, 2018, 293, 17349-17361.	1.6	43
116	Evidence That the Î ² Subunit of <i>Chlamydia trachomatis</i> Ribonucleotide Reductase Is Active with the Manganese Ion of Its Manganese(IV)/Iron(III) Cofactor in Site 1. Journal of the American Chemical Society, 2012, 134, 2520-2523.	6.6	42
117	Substrate-Triggered Formation of a Peroxo-Fe ₂ (III/III) Intermediate during Fatty Acid Decarboxylation by UndA. Journal of the American Chemical Society, 2019, 141, 14510-14514.	6.6	42
118	O ₂ -Evolving Chlorite Dismutase as a Tool for Studying O ₂ -Utilizing Enzymes. Biochemistry, 2012, 51, 1607-1616.	1.2	39
119	A 2.8 à Fe–Fe Separation in the Fe ₂ ^{III/IV} Intermediate, X, from <i>Escherichia coli</i> Ribonucleotide Reductase. Journal of the American Chemical Society, 2013, 135, 16758-16761.	6.6	39
120	Use of a Chemical Trigger for Electron Transfer to Characterize a Precursor to ClusterXin Assembly of the Iron-Radical Cofactor ofEscherichia coliRibonucleotide Reductaseâ€. Biochemistry, 2004, 43, 5953-5964.	1.2	38
121	Rapid and Quantitative Activation of Chlamydia trachomatis Ribonucleotide Reductase by Hydrogen Peroxide. Biochemistry, 2008, 47, 4477-4483.	1.2	38
122	Structural and Spectroscopic Characterization of a High‣pin {FeNO} 6 Complex with an Iron(IV)â^'NO â^' Electronic Structure. Angewandte Chemie - International Edition, 2016, 55, 6685-6688.	7.2	38
123	Structural Basis for Superoxide Activation of <i>Flavobacterium johnsoniae</i> Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry, 2018, 57, 2679-2693.	1.2	38
124	Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight into Flavodiiron NO Reductases. Journal of the American Chemical Society, 2018, 140, 13429-13440.	6.6	38
125	AurF from <i>Streptomyces thioluteus</i> and a Possible New Family of Manganese/Iron Oxygenases. Biochemistry, 2007, 46, 10413-10418.	1.2	37
126	Biogenesis of Iron-Sulfur Clusters in Photosystem I. Journal of Biological Chemistry, 2008, 283, 28426-28435.	1.6	37

#	Article	IF	CITATIONS
127	Active Site Threonine Facilitates Proton Transfer during Dioxygen Activation at the Diiron Center of Toluene/o-Xylene Monooxygenase Hydroxylase. Journal of the American Chemical Society, 2010, 132, 13582-13585.	6.6	36
128	Structural Basis for Assembly of the Mn ^{IV} /Fe ^{III} Cofactor in the Class Ic Ribonucleotide Reductase from <i>Chlamydia trachomatis</i> . Biochemistry, 2013, 52, 6424-6436.	1.2	35
129	Efficient Delivery of Long-Chain Fatty Aldehydes from the <i>Nostoc punctiforme</i> Acyl–Acyl Carrier Protein Reductase to Its Cognate Aldehyde-Deformylating Oxygenase. Biochemistry, 2015, 54, 1006-1015.	1.2	35
130	Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). Journal of the American Chemical Society, 2019, 141, 9964-9979.	6.6	35
131	A Peroxodiiron(III/III) Intermediate Mediating Both <i>N</i> -Hydroxylation Steps in Biosynthesis of the <i>N</i> -Nitrosourea Pharmacophore of Streptozotocin by the Multi-domain Metalloenzyme SznF. Journal of the American Chemical Society, 2020, 142, 11818-11828.	6.6	35
132	Importance of the Maintenance Pathway in the Regulation of the Activity ofEscherichia coliRibonucleotide Reductaseâ€. Biochemistry, 2008, 47, 3989-3999.	1.2	34
133	Geometric and Electronic Structure of the Mn(IV)Fe(III) Cofactor in Class Ic Ribonucleotide Reductase: Correlation to the Class Ia Binuclear Non-Heme Iron Enzyme. Journal of the American Chemical Society, 2013, 135, 17573-17584.	6.6	34
134	Non-heme High-Spin {FeNO} ^{6–8} Complexes: One Ligand Platform Can Do It All. Journal of the American Chemical Society, 2018, 140, 11341-11359.	6.6	34
135	Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions. Biochemistry, 2018, 57, 2074-2083.	1.2	33
136	Magnetic exchange coupling in a nearly linear iron(III)nickel(II)nickel(II)iron(III) complex. Journal of the Chemical Society Chemical Communications, 1995, , 1913-1915.	2.0	32
137	Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase. Nature Communications, 2020, 11, 6310.	5.8	32
138	Facile Electron Transfer during Formation of Cluster X and Kinetic Competence of X for Tyrosyl Radical Production in Protein R2 of Ribonucleotide Reductase from Mouseâ€. Biochemistry, 2002, 41, 981-990.	1.2	31
139	O–H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. Journal of the American Chemical Society, 2017, 139, 2045-2052.	6.6	31
140	α-Amine Desaturation of <scp>d</scp> -Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent <scp>l</scp> -Arginine 3-Hydroxylase, VioC. Biochemistry, 2018, 57, 6479-6488.	1.2	30
141	Reaction of Cytochrome P450BM3and Peroxynitrite Yields Nitrosyl Complex. Journal of the American Chemical Society, 2007, 129, 5855-5859.	6.6	29
142	Stereochemical and Mechanistic Investigation of the Reaction Catalyzed by Fom3 from <i>Streptomyces fradiae</i> , a Cobalamin-Dependent Radical <i>S</i> -Adenosylmethionine Methylase. Biochemistry, 2018, 57, 4972-4984.	1.2	29
143	Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from <i>Chlamydia trachomatis</i> . Journal of the American Chemical Society, 2017, 139, 1950-1957.	6.6	28
144	Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases. Journal of the American Chemical Society, 2019, 141, 15153-15165.	6.6	28

#	Article	IF	CITATIONS
145	A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry, 2019, 58, 1627-1647.	1.2	28
146	Further Insights into the Spectroscopic Properties, Electronic Structure, and Kinetics of Formation of the Hemeâ`'Peroxoâ^'Copper Complex [(F8TPP)FeIIIâ^'(O22-)â^'CuII(TMPA)]+. Inorganic Chemistry, 2007, 46, 3889-3902.	1.9	27
147	Characterization of Quinolinate Synthases from <i>Escherichia coli</i> , <i>Mycobacterium tuberculosis</i> , and <i>Pyrococcus horikoshii</i> Indicates That [4Fe-4S] Clusters Are Common Cofactors throughout This Class of Enzymes. Biochemistry, 2008, 47, 10999-11012.	1.2	27
148	Exchange coupling constant J of peroxodiferric reaction intermediates determined by Mössbauer spectroscopy. Journal of Biological Inorganic Chemistry, 2002, 7, 863-869.	1.1	26
149	Two Distinct Mechanisms of Inactivation of the Class Ic Ribonucleotide Reductase from <i>Chlamydia trachomatis</i> by Hydroxyurea: Implications for the Protein Gating of Intersubunit Electron Transfer. Biochemistry, 2010, 49, 5340-5349.	1.2	26
150	ChlR Protein of Synechococcus sp. PCC 7002 Is a Transcription Activator That Uses an Oxygen-sensitive [4Fe-4S] Cluster to Control Genes involved in Pigment Biosynthesis. Journal of Biological Chemistry, 2014, 289, 16624-16639.	1.6	26
151	Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB. Nature, 2021, 597, 566-570.	13.7	25
152	Nuclear Resonance Vibrational Spectroscopic Definition of the Facial Triad Fe ^{IV} â•O Intermediate in Taurine Dioxygenase: Evaluation of Structural Contributions to Hydrogen Atom Abstraction. Journal of the American Chemical Society, 2020, 142, 18886-18896.	6.6	23
153	Emerging Structural and Functional Diversity in Proteins With Dioxygen-Reactive Dinuclear Transition Metal Cofactors. , 2020, , 215-250.		23
154	Spectroscopic Characterization of a Novel Tetranuclear Fe Cluster in an Ironâ^'Sulfur Protein Isolated fromDesulfovibrio desulfuricansâ€. Biochemistry, 1998, 37, 2830-2842.	1.2	22
155	Mössbauer and EPR Characterization of theS=9/2Mixed-Valence Fe(II)Fe(III) Cluster in the Cryoreduced R2 Subunit ofEscherichia coliRibonucleotide Reductase. Journal of the American Chemical Society, 2000, 122, 5327-5336.	6.6	22
156	Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD. Biochemistry, 2019, 58, 4218-4223.	1.2	22
157	Organometallic Complex Formed by an Unconventional Radical <i>S</i> -Adenosylmethionine Enzyme. Journal of the American Chemical Society, 2016, 138, 9755-9758.	6.6	21
158	First Step in Catalysis of the Radical <i>S</i> -Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S] ^O -Like Auxiliary Cluster. Journal of the American Chemical Society, 2020, 142, 1911-1924.	6.6	21
159	Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Inorganic Chemistry, 2017, 56, 13382-13389.	1.9	19
160	High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates. Journal of Inorganic Biochemistry, 2020, 203, 110877.	1.5	19
161	Spectroscopic Studies on the [4Fe-4S] Cluster in Adenosine 5â€2-Phosphosulfate Reductase from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 1216-1226.	1.6	18
162	An Iron(IV)–Oxo Intermediate Initiating <scp>l</scp> -Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme. Journal of the American Chemical Society, 2021, 143, 2293-2303.	6.6	18

#	Article	IF	CITATIONS
163	Molecular basis for enantioselective herbicide degradation imparted by aryloxyalkanoate dioxygenases in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13299-13304.	3.3	17
164	Demonstration by2H ENDOR Spectroscopy thatmyo-Inositol Binds via an Alkoxide Bridge to the Mixed-Valent Diiron Center ofmyo-Inositol Oxygenase. Journal of the American Chemical Society, 2006, 128, 10374-10375.	6.6	16
165	Characterization of Lipoyl Synthase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2016, 55, 1372-1383.	1.2	16
166	The RicAFT (YmcA‥lbF‥aaT) complex carries two [4Feâ€4S] 2+ clusters and may respond to redox changes. Molecular Microbiology, 2017, 104, 837-850.	1.2	16
167	Novel approaches for the accumulation of oxygenated intermediates to multi-millimolar concentrations. Coordination Chemistry Reviews, 2013, 257, 234-243.	9.5	15
168	Twoâ€Color Valenceâ€ŧoâ€Core Xâ€ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angewandte Chemie - International Edition, 2018, 57, 12754-12758.	7.2	15
169	A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123566119.	3.3	14
170	Substrate-Triggered μ-Peroxodiiron(III) Intermediate in the 4-Chloro- <scp>I</scp> -Lysine-Fragmenting Heme-Oxygenase-like Diiron Oxidase (HDO) BesC: Substrate Dissociation from, and C4 Targeting by, the Intermediate. Biochemistry, 2022, 61, 689-702.	1.2	13
171	Demonstration of Peroxodiferric Intermediate in M-Ferritin Ferroxidase Reaction Using Rapid Freeze-Quench Mössbauer, Resonance Raman, and XAS Spectroscopies. Methods in Enzymology, 2002, 354, 436-454.	0.4	12
172	Freeze-quench 57Fe-Mössbauer spectroscopy: trapping reactive intermediates. Photosynthesis Research, 2009, 102, 295-304.	1.6	12
173	Steric Enforcement of <i>cis</i> -Epoxide Formation in the Radical C–O-Coupling Reaction by Which (<i>S</i>)-2-Hydroxypropylphosphonate Epoxidase (HppE) Produces Fosfomycin. Journal of the American Chemical Society, 2019, 141, 20397-20406.	6.6	12
174	Use of Noncanonical Tyrosine Analogues to Probe Control of Radical Intermediates during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). ACS Catalysis, 2022, 12, 6968-6979.	5.5	12
175	Biochemical and Spectroscopic Characterization of Overexpressed Fuscoredoxin from Escherichia coli. Biochemical and Biophysical Research Communications, 1999, 260, 209-215.	1.0	11
176	Iron–Sulfur Cluster Engineering Provides Insight into the Evolution of Substrate Specificity among Sulfonucleotide Reductases. ACS Chemical Biology, 2012, 7, 306-315.	1.6	11
177	The Fe ₂ (NO) ₂ Diamond Core: A Unique Structural Motif In Nonâ€Heme Iron–NO Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17695-17699.	7.2	11
178	Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase. Inorganic Chemistry, 2019, 58, 1398-1413.	1.9	11
179	Hybrid radical-polar pathway for excision of ethylene from 2-oxoglutarate by an iron oxygenase. Science, 2021, 373, 1489-1493.	6.0	11
180	Direct Measurement of the Radical Translocation Distance in the Class I Ribonucleotide Reductase from <i>Chlamydia trachomatis</i> . Journal of Physical Chemistry B, 2015, 119, 13777-13784.	1.2	10

#	Article	IF	CITATIONS
181	The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Nonâ€Heme Iron–NO Chemistry. Angewandte Chemie, 2019, 131, 17859-17863.	1.6	10
182	Toward a mechanistic and physiological understanding of a ferredoxin:disulfide reductase from the domains Archaea and Bacteria. Journal of Biological Chemistry, 2018, 293, 9198-9209.	1.6	9
183	In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS Bio & Med Chem Au, 2022, 2, 456-468.	1.7	9
184	Circular Dichroism, Magnetic Circular Dichroism, and Variable Temperature Variable Field Magnetic Circular Dichroism Studies of Biferrous and Mixed-Valent <i>myo</i> -Inositol Oxygenase: Insights into Substrate Activation of O ₂ Reactivity. Journal of the American Chemical Society, 2013, 135, 15851-15863.	6.6	8
185	Structural and Spectroscopic Characterization of a Highâ€5pin {FeNO} 6 Complex with an Iron(IV)â^'NO â^' Electronic Structure. Angewandte Chemie, 2016, 128, 6797-6800.	1.6	8
186	Radical-Translocation Intermediates and Hurdling of Pathway Defects in "Super-oxidized― (Mn ^{IV} /Fe ^{IV}) <i>Chlamydia trachomatis</i> Ribonucleotide Reductase. Journal of the American Chemical Society, 2012, 134, 20498-20506.	6.6	7
187	Analysis of RNA Methylation by Phylogenetically Diverse Cfr Radical <i>S</i> -Adenosylmethionine Enzymes Reveals an Iron-Binding Accessory Domain in a Clostridial Enzyme. Biochemistry, 2019, 58, 3169-3184.	1.2	3
188	Synthesis and characterization of a model complex for flavodiiron NO reductases that stabilizes a diiron mononitrosyl complex. Journal of Inorganic Biochemistry, 2022, 229, 111723.	1.5	3
189	Synthesis of 6,6―and 7,7â€Difluoroâ€1â€acetamidopyrrolizidines and Their Oxidation Catalyzed by the Nonheme Fe Oxygenase LolO. ChemBioChem, 2022, 23, .	1.3	3
190	Characterization of LipS1 and LipS2 from <i>Thermococcus kodakarensis</i> : Proteins Annotated as Biotin Synthases, which Together Catalyze Formation of the Lipoyl Cofactor. ACS Bio & Med Chem Au, 2022, 2, 509-520.	1.7	3
191	Twoâ€Color Valenceâ€ŧoâ€Core Xâ€ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angewandte Chemie, 2018, 130, 12936-12940.	1.6	1
192	Paramagnetic Resonance in Mechanistic Studies of Fe-S/Radical Enzymes. ACS Symposium Series, 2003, , 113-127.	0.5	0
193	Mechanism of Taurine: α-Ketoglutarate Dioxygenase (TauD) from Escherichia coli. ChemInform, 2006, 37, no.	0.1	0
194	Evidence for two Câ€H leaving intermediates in isopenicillin N synthase. FASEB Journal, 2011, 25, 195.1.	0.2	0
195	Evidence for the Sacrificial Role of the Auxiliary [4Feâ€4S] Cluster of Lipoyl Synthase. FASEB Journal, 2015, 29, 572.4.	0.2	0
196	Mechanistic pathways to unusual outcomes in reactions of ironâ€dependent oxygenases. FASEB Journal, 2017, 31, 258.1.	0.2	0
197	Progress Toward Understanding Protein Control of Reaction Outcome in the Diverse Reactivity of Iron(II)―and 2â€Oxoglutarateâ€dependent Oxygenases. FASEB Journal, 2022, 36,	0.2	0