
Silvia Folloni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3977023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Postprandial blood glucose and insulin responses to breads formulated with different wheat evolutionary populations (Triticum aestivum L.): A randomized controlled trial on healthy subjects. Nutrition, 2022, 94, 111533.	2.4	6
2	The impact of processing on the phenolic acids, free betaine and choline in Triticum spp. L. whole grains and milling by-products. Food Chemistry, 2020, 311, 125940.	8.2	15
3	Impact of air classification, with and without micronisation, on the lipid component of rice bran () Tj ETQq1 1 0.78 Technology, 2020, 55, 2832-2840.	34314 rgB 2.7	T /Overlock 4
4	Evaluation of the volatile fraction, pungency and extractable color of different Italian Capsicum annuum cultivars designed for food industry. European Food Research and Technology, 2019, 245, 2669-2678.	3.3	16
5	5-n-alkylresorcinols but not hydroxycinnamic acids are directly related to a lower accumulation of deoxynivalenol and its glucoside in Triticum spp. Genotypes with different ploidity levels. Journal of Cereal Science, 2019, 85, 214-220.	3.7	10
6	Current Trends in Ancient Grainsâ€Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 123-136.	11.7	101
7	Direct analysis real-time–high-resolution mass spectrometry for <i>Triticum</i> species authentication. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 2291-2297.	2.3	17
8	A compendium of wheat germ: Separation, stabilization and food applications. Trends in Food Science and Technology, 2018, 78, 120-133.	15.1	87
9	Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Research International, 2017, 91, 92-102.	6.2	68
10	Characterization and Discrimination of Ancient Grains: A Metabolomics Approach. International Journal of Molecular Sciences, 2016, 17, 1217.	4.1	39
11	Combinatory SYBR® Green Real-Time PCR Screening Approach for Tracing Materials Derived from Genetically Modified Rice. Food Analytical Methods, 2013, 6, 361-369.	2.6	10
12	Towards a Pathogenic Escherichia coli Detection Platform Using Multiplex SYBR®Green Real-Time PCR Methods and High Resolution Melting Analysis. PLoS ONE, 2012, 7, e39287.	2.5	28
13	Detection of airborne genetically modified maize pollen by realâ€ŧime PCR. Molecular Ecology Resources, 2012, 12, 810-821.	4.8	25
14	Applicability of the "Real-Time PCR-Based Ready-to-Use Multi-Target Analytical System for GMO Detection―in processed maize matrices. European Food Research and Technology, 2012, 234, 109-118.	3.3	23
15	Application of the Modular Approach to an In-House Validation Study of Real-Time PCR Methods for the Detection and Serogroup Determination of Verocytotoxigenic Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 6954-6963.	3.1	33
16	A Ready-To-Use Multi-Target Analytical System for GM Soy and Maize Detection for Enforcement Laboratories. , 2011, , .		3
17	Development of an ELISA Reverse-Based Assay to Assess the Presence of Mycotoxins in Cereal Flour. Food Analytical Methods, 2011, 4, 221-227.	2.6	12
18	Statistical Evaluation of Real-Time PCR Protocols Applied to Quantify Genetically Modified Maize. Food Analytical Methods, 2010, 3, 304-312.	2.6	6

Silvia Folloni

#	Article	IF	CITATIONS
19	Specificity of the TraA–DNA Interaction in the Regulation of the pPD1-Encoded Sex Pheromone Response in Enterococcus faecalis. Journal of Molecular Biology, 2008, 380, 932-945.	4.2	14
20	Cloning, E. coli overexpression, purification and binding properties of TraA and TraC, two proteins involved in the pheromone-dependent conjugation process in enterococci. Protein Expression and Purification, 2008, 60, 198-204.	1.3	1
21	Rice: Another Potential Cause of Food Allergy in Patients Sensitized to Lipid Transfer Protein. International Archives of Allergy and Immunology, 2007, 143, 69-74.	2.1	44
22	Crystal Structure of Peach Pru p 3, the Prototypic Member of the Family of Plant Non-specific Lipid Transfer Protein Pan-allergens. Journal of Molecular Biology, 2006, 356, 684-694.	4.2	122