Manuel Alatorre-Meda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3976692/publications.pdf

Version: 2024-02-01

34 papers

1,124 citations

³⁶¹⁴¹³
20
h-index

30 g-index

38 all docs 38 docs citations

38 times ranked 2112 citing authors

#	Article	IF	CITATIONS
1	New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112219.	5.0	23
2	Optimizing the Efficiency of a Cytocompatible Carbon-Dots-Based FRET Platform and Its Application as a Riboflavin Sensor in Beverages. Nanomaterials, 2021, 11, 1981.	4.1	6
3	Lipid Modulation in the Formation of \hat{l}^2 -Sheet Structures. Implications for De Novo Design of Human Islet Amyloid Polypeptide and the Impact on \hat{l}^2 -Cell Homeostasis. Biomolecules, 2020, 10, 1201.	4.0	5
4	Preparation of Polymeric Films of PVDMA–PEI Functionalized with Fatty Acids for Studying the Adherence and Proliferation of Langerhans β-Cells. ACS Omega, 2020, 5, 5249-5257.	3.5	6
5	Bis-quaternary ammonium gemini surfactants for gene therapy: Effects of the spacer hydrophobicity on the DNA complexation and biological activity. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110817.	5.0	11
6	Photocrosslinked Alginate-Methacrylate Hydrogels with Modulable Mechanical Properties: Effect of the Molecular Conformation and Electron Density of the Methacrylate Reactive Group. Materials, 2020, 13, 534.	2.9	33
7	New synthesis of N-alkyl- \hat{l}^2 -amino acids and their methyl esters from dendrimeric molecules. MRS Communications, 2020, 10, 338-345.	1.8	0
8	Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion. Cells, 2019, 8, 884.	4.1	33
9	Characterization of the complexation phenomenon and biological activity in vitro of polyplexes based on Tetronic T901 and DNA. Journal of Colloid and Interface Science, 2018, 519, 58-70.	9.4	5
10	NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System. Nanomaterials, 2018, 8, 231.	4.1	16
11	Publisher's note. Colloids and Surfaces B: Biointerfaces, 2017, 159, 898.	5.0	0
12	Biocompatible hollow polymeric particles produced by a mild solvent- and template free strategy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 732-740.	5.0	2
13	The role of hyaluronic acid inclusion on the energetics of encapsulation and release of a protein molecule from chitosan-based nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 141, 223-232.	5.0	25
14	Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers. Small, 2015, 11, 3648-3652.	10.0	24
15	Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnology Advances, 2015, 33, 1310-1326.	11.7	67
16	Polysaccharide-Based Nanobiomaterials as Controlled Release Systems for Tissue Engineering Applications. Current Pharmaceutical Design, 2015, 21, 4837-4850.	1.9	21
17	Enhanced Cell Affinity of Chitosan Membranes Mediated by Superficial Cross-Linking: A Straightforward Method Attainable by Standard Laboratory Procedures. Biomacromolecules, 2014, 15, 291-301.	5.4	18
18	Targeted Combinatorial Therapy Using Gold Nanostars as Theranostic Platforms. Journal of Physical Chemistry C, 2014, 118, 26313-26323.	3.1	42

#	Article	IF	CITATIONS
19	Biocompatible Polymeric Microparticles Produced by a Simple Biomimetic Approach. Langmuir, 2014, 30, 4535-4539.	3.5	30
20	Fluorescent Drug-Loaded, Polymeric-Based, Branched Gold Nanoshells for Localized Multimodal Therapy and Imaging of Tumoral Cells. ACS Nano, 2014, 8, 2725-2738.	14.6	162
21	Polymericâ€Gold Nanohybrids for Combined Imaging and Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 1309-1325.	7.6	48
22	Chitosan–hyaluronic acid nanoparticles for gene silencing: The role of hyaluronic acid on the nanoparticles' formation and activity. Colloids and Surfaces B: Biointerfaces, 2013, 103, 615-623.	5.0	76
23	Effects of the hydrophobization on chitosan–insulin nanoparticles obtained by an alkylation reaction on chitosan. Journal of Applied Polymer Science, 2013, 129, 822-834.	2.6	25
24	UV and Near-IR Triggered Release from Polymeric Micelles and Nanoparticles. RSC Smart Materials, 2013, , 304-348.	0.1	23
25	Biomimetic Nanohybrids for Combined imaging and Cancer Therapy. Materials Research Society Symposia Proceedings, 2012, 1468, 37.	0.1	O
26	Hydration effects on the fibrillation process of a globular protein: the case of human serum albumin. Soft Matter, 2012, 8, 3608.	2.7	33
27	Physicochemical Characteristics of Protein–NP Bioconjugates: The Role of Particle Curvature and Solution Conditions on Human Serum Albumin Conformation and Fibrillogenesis Inhibition. Langmuir, 2012, 28, 9113-9126.	3.5	192
28	Polycation-Mediated Gene Delivery: The Physicochemical Aspects Governing the Process. , 2011, , .		3
29	The influence of chitosan valence on the complexation and transfection of DNA: The weaker the DNA–chitosan binding the higher the transfection efficiency. Colloids and Surfaces B: Biointerfaces, 2011, 82, 54-62.	5.0	56
30	Micellisation of triblock copolymers of ethylene oxide and 1,2-butylene oxide: Effect of B-block length. Journal of Colloid and Interface Science, 2011, 361, 154-158.	9.4	15
31	Release of DNA from surfactant complexes induced by 2-hydroxypropyl- \hat{l}^2 -cyclodextrin. International Journal of Biological Macromolecules, 2010, 46, 153-158.	7. 5	20
32	DNAâ^'Poly(diallyldimethylammonium chloride) Complexation and Transfection Efficiency. Journal of Physical Chemistry B, 2010, 114, 9356-9366.	2.6	40
33	DNA–METAFECTENE™ PRO complexation: a physical chemistry study. Physical Chemistry Chemical Physics, 2010, 12, 7464.	2.8	12
34	DNA–chitosan complexation: A dynamic light scattering study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 145-152.	4.7	49