Vaclav Pouchly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3976248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Step Sintering of oxide ceramics with various crystal structures. Journal of the European Ceramic Society, 2010, 30, 583-589.	5.7	91
2	Two-stage master sintering curve applied to two-step sintering of oxide ceramics. Journal of the European Ceramic Society, 2013, 33, 2275-2283.	5.7	50
3	Grain growth suppression in alumina via doping and two-step sintering. Ceramics International, 2015, 41, 11975-11983.	4.8	46
4	Master sintering curve: A practical approach to its construction. Science of Sintering, 2010, 42, 25-32.	1.4	44
5	Densification of fine-grained alumina ceramics doped by magnesia, yttria and zirconia evaluated by two different sintering models. Journal of the European Ceramic Society, 2014, 34, 4363-4372.	5.7	41
6	TWO-STEP SINTERING AND SPARK PLASMA SINTERING OF Al ₂ O ₃ , ZrO ₂ AND SrTiO ₃ CERAMICS. Integrated Ferroelectrics, 2008, 99, 114-124.	0.7	34
7	Luminescent rare-earth-doped transparent alumina ceramics. Journal of the European Ceramic Society, 2016, 36, 2975-2980.	5.7	34
8	Thermally-insulated ultra-fast high temperature sintering (UHS) of zirconia: A master sintering curve analysis. Scripta Materialia, 2021, 203, 114076.	5.2	28
9	Preparation of Transparent Nanoceramics by Suppressing Pore Coalescence. Journal of the American Ceramic Society, 2011, 94, 4269-4273.	3.8	27
10	Transparent magnesium aluminate spinel: Effect of critical temperature in two-stage spark plasma sintering. Journal of the European Ceramic Society, 2020, 40, 2417-2425.	5.7	25
11	Preparation of Transparent 3 <scp>Y</scp> â€ <scp>TZP</scp> Nanoceramics with No Lowâ€Temperature Degradation. Journal of the American Ceramic Society, 2014, 97, 1402-1406.	3.8	23
12	Intensive particle rearrangement in the early stage of spark plasma sintering process. Journal of Asian Ceramic Societies, 2015, 3, 183-187.	2.3	22
13	Sintering kinetic window for yttria-stabilized cubic zirconia. Journal of the European Ceramic Society, 2016, 36, 2931-2936.	5.7	19
14	Processing of zirconia nanoceramics from a coarse powder. Journal of the European Ceramic Society, 2015, 35, 1285-1295.	5.7	16
15	Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour. Journal of the European Ceramic Society, 2017, 37, 4287-4295.	5.7	16
16	Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction. Science of Sintering, 2012, 44, 169-175.	1.4	10
17	Master sintering curves of two different alumina powder compacts. Processing and Application of Ceramics, 2009, 3, 177-180.	0.8	7
18	Colloidal processing of low-concentrated zirconia nanosuspension using osmotic consolidation. Ceramics International, 2016, 42, 11838-11843.	4.8	6

VACLAV POUCHLY

#	Article	IF	CITATIONS
19	Improved microstructure of alumina ceramics prepared from DBD plasma activated powders. Journal of the European Ceramic Society, 2019, 39, 1297-1303.	5.7	6
20	Viscous flow spark plasma sintering of glass microspheres with YAG composition and high tendency to crystallization. Journal of the European Ceramic Society, 2021, 41, 1537-1542.	5.7	6
21	Advantages of combined sintering compared to conventional sintering of mechanically activated magnesium titanate. Science of Sintering, 2014, 46, 283-290.	1.4	5
22	Microstructure and phase composition of steatite ceramics sintered by traditional and spark plasma sintering. Science of Sintering, 2018, 50, 299-312.	1.4	5
23	A practical approach for the calculation of the activation energy of the sintering. Science of Sintering, 2016, 48, 317-324.	1.4	5
24	Waterâ€assisted cold isostatic pressing to enhance sinterability of alumina ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 1249-1254.	2.1	3