List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3976005/publications.pdf Version: 2024-02-01

DELLIN

#	Article	IF	CITATIONS
1	Genetic and Chemical Diversity of Edible Mushroom Pleurotus Species. BioMed Research International, 2022, 2022, 1-13.	1.9	6
2	A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS ₂ van der Waals heterojunction. Journal of Materials Chemistry C, 2021, 9, 13123-13131.	5.5	32
3	A defect-induced broadband photodetector based on WS ₂ /pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect. Nanoscale, 2021, 13, 13550-13557.	5.6	48
4	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	12.2	37
5	Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Research, 2021, 14, 1973-1979.	10.4	152
6	Ultrabroadband and High-Detectivity Photodetector Based on WS ₂ /Ge Heterojunction through Defect Engineering and Interface Passivation. ACS Nano, 2021, 15, 10119-10129.	14.6	252
7	Mixed-dimensional Te/CdS van der Waals heterojunction for self-powered broadband photodetector. Nanotechnology, 2021, 32, 415201.	2.6	16
8	Fabrication of 2D PdSe ₂ /3D CdTe Mixed-Dimensional van der Waals Heterojunction for Broadband Infrared Detection. ACS Applied Materials & Interfaces, 2021, 13, 41791-41801.	8.0	30
9	Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. Journal of Colloid and Interface Science, 2021, 596, 376-383.	9.4	47
10	Skin-attachable and flexible MWCNT grid/Ecoflex strain sensors with fast equilibrium of response for detection of sound vibrations and human motions. Journal of Materials Science: Materials in Electronics, 2021, 32, 26439-26448.	2.2	6
11	Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. Journal of Alloys and Compounds, 2020, 842, 155890.	5.5	40
12	Controllable synthesis of CsxPbyBrz-based perovskites by a polar solvent-triggered transformation method and its application as an invisible security ink. Journal of Materials Science, 2020, 55, 6826-6833.	3.7	5
13	Mixed-dimensional PdSe ₂ /SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Journal of Materials Chemistry A, 2020, 8, 3632-3642.	10.3	158
14	Grapheneâ€Based Mixedâ€Dimensional van der Waals Heterostructures for Advanced Optoelectronics. Advanced Materials, 2019, 31, e1806411.	21.0	115
15	WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. Nano Energy, 2019, 65, 104001.	16.0	48
16	Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 2019, 60, 404-412.	16.0	144
17	Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. Advanced Materials, 2019, 31, e1808197	21.0	165
18	Defect repair for enhanced piezo-phototronic MoS ₂ flexible phototransistors. Journal of Materials Chemistry C, 2019, 7, 14731-14738.	5.5	20

#	Article	IF	CITATIONS
19	Piezotronic Effect on Rashba Spin–Orbit Coupling in a ZnO/P3HT Nanowire Array Structure. ACS Nano, 2018, 12, 1811-1820.	14.6	61
20	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	16.0	178
21	Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano, 2018, 12, 1849-1858.	14.6	299
22	Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells. Nano Research, 2018, 11, 3877-3885.	10.4	22
23	Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Materials Today Nano, 2018, 4, 17-31.	4.6	97
24	Piezo-phototronic Effect Enhanced Photodetector Based on CH ₃ NH ₃ Pbl ₃ Single Crystals. ACS Nano, 2018, 12, 10501-10508.	14.6	67
25	Piezoâ€Phototronic Effect for Enhanced Flexible MoS ₂ /WSe ₂ van der Waals Photodiodes. Advanced Functional Materials, 2018, 28, 1802849.	14.9	130
26	Tunable WSe ₂ –CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. Nanoscale, 2018, 10, 14472-14479.	5.6	53
27	Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method. ACS Applied Materials & Interfaces, 2017, 9, 7224-7231.	8.0	97
28	Polarityâ€Dependent Piezotronic Effect and Controllable Transport Modulation of ZnO with Multifield Coupled Interface Engineering. Advanced Materials Interfaces, 2017, 4, 1600842.	3.7	12
29	Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano, 2017, 11, 5660-5669.	14.6	47
30	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	21.0	234
31	Illumination-dependent free carrier screening effect on the performance evolution of ZnO piezotronic strain sensor. Nano Research, 2016, 9, 1091-1100.	10.4	16
32	Surpassing the Exciton Diffusion Limit in Single-Walled Carbon Nanotube Sensitized Solar Cells. ACS Nano, 2016, 10, 11258-11265.	14.6	22
33	Improved Photoresponse Performance of Self-Powered ZnO/Spiro-MeOTAD Heterojunction Ultraviolet Photodetector by Piezo-Phototronic Effect. ACS Applied Materials & Interfaces, 2016, 8, 6137-6143.	8.0	92
34	Calibration on force upon the surface of single ZnO nanowire applied by AFM tip with different scanning angles. RSC Advances, 2015, 5, 47309-47313.	3.6	1
35	Enhanced Performance of ZnO Piezotronic Pressure Sensor through Electron-Tunneling Modulation of MgO Nanolayer. ACS Applied Materials & amp; Interfaces, 2015, 7, 1602-1607.	8.0	70
36	Three-Dimensional Ordered ZnO/Cu ₂ O Nanoheterojunctions for Efficient Metal–Oxide Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 3216-3223.	8.0	74

#	Article	IF	CITATIONS
37	Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloids and Surfaces B: Biointerfaces, 2015, 126, 476-480.	5.0	32
38	Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application. Scientific Reports, 2015, 5, 7882.	3.3	151
39	A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Advances, 2015, 5, 5976-5981.	3.6	97
40	Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires. RSC Advances, 2015, 5, 42075-42080.	3.6	26
41	AFM investigation of nanomechanical properties of ZnO nanowires. RSC Advances, 2015, 5, 33445-33449.	3.6	6
42	A tunable ZnO/electrolyte heterojunction for a self-powered photodetector. Physical Chemistry Chemical Physics, 2014, 16, 26697-26700.	2.8	32
43	Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Research, 2014, 7, 190-198.	10.4	56
44	In Situ Transmission Electron Microscopy Investigation on Fatigue Behavior of Single ZnO Wires under High-Cycle Strain. Nano Letters, 2014, 14, 480-485.	9.1	62
45	Tunable channel width of a UV-gate field effect transistor based on ZnO micro-nano wire. RSC Advances, 2014, 4, 18378.	3.6	14
46	Investigation on the Mechanism of Nanodamage and Nanofailure for Single ZnO Nanowires under an Electric Field. ACS Applied Materials & Interfaces, 2014, 6, 2344-2349.	8.0	12
47	Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering. Nano Research, 2014, 7, 860-868.	10.4	93
48	Piezotronic Interface Engineering on ZnO/Au-Based Schottky Junction for Enhanced Photoresponse of a Flexible Self-Powered UV Detector. ACS Applied Materials & amp; Interfaces, 2014, 6, 14116-14122.	8.0	105
49	Design of efficient dye-sensitized solar cells with patterned ZnO–ZnS core–shell nanowire array photoanodes. Nanoscale, 2014, 6, 4691-4697.	5.6	38
50	High sensitivity, fast speed and self-powered ultraviolet photodetectors based on ZnO micro/nanowire networks. Progress in Natural Science: Materials International, 2014, 24, 1-5.	4.4	28
51	Low-voltage blue light emission from n-ZnO/p-GaN heterojunction formed by RF magnetron sputtering method. Current Applied Physics, 2014, 14, 345-348.	2.4	41
52	Asymmetric Behavior in Flexible Piezoelectric Strain Sensors Made of Single ZnO Nanowires. Journal of Nanoscience and Nanotechnology, 2014, 14, 6084-6088.	0.9	2
53	Facile fabrication of large-scale patterned ZnO nanorod arrays with tunable arrangement, period and morphology. CrystEngComm, 2013, 15, 8022.	2.6	19
54	Size effect in a cantilevered ZnO micro/nanowire and its potential as a performance tunable force sensor. RSC Advances, 2013, 3, 19375.	3.6	27

#	Article	IF	CITATIONS
55	Ultraviolet and visible photoresponse properties of a ZnO/Si heterojunction at zero bias. RSC Advances, 2013, 3, 17682.	3.6	24
56	A self-powered strain senor based on a ZnO/PEDOT:PSS hybrid structure. RSC Advances, 2013, 3, 17011.	3.6	30
57	Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators B: Chemical, 2013, 176, 22-27.	7.8	93
58	Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Mikrochimica Acta, 2013, 180, 759-766.	5.0	65
59	Self-Powered UV Photosensor Based on PEDOT:PSS/ZnO Micro/Nanowire with Strain-Modulated Photoresponse. ACS Applied Materials & amp; Interfaces, 2013, 5, 3671-3676.	8.0	128
60	Active Flexible Strain Sensor Based on Single ZnO Micro/Nanowire. Materials Research Society Symposia Proceedings, 2013, 1556, 1.	0.1	0
61	FABRICATION AND PERFORMANCE STUDY ON INDIVIDUAL ZNO NANOWIRES BASED BIOELECTRODE. , 2012, , .		0