Mingyi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3975755/publications.pdf

Version: 2024-02-01

61	5,889	38	61
papers	citations	h-index	g-index
63	63	63	4922
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phosphorylation of OsABA2 at Ser197 by OsMPK1 regulates abscisic acid biosynthesis in rice. Biochemical and Biophysical Research Communications, 2022, 586, 68-73.	1.0	4
2	A J-Protein OsDjC46 Interacts with ZFP36 to Participate in ABA-Mediated Antioxidant Defense in Rice. Antioxidants, 2022, 11, 207.	2.2	2
3	Phosphorylation of DUF1639 protein by osmotic stress/ABA-activated protein kinase 10 regulates abscisic acid-induced antioxidant defense in rice. Biochemical and Biophysical Research Communications, 2022, 604, 30-36.	1.0	3
4	OsDMI3â€mediated OsUXS3 phosphorylation improves oxidative stress tolerance by modulating OsCATB protein abundance in rice. Journal of Integrative Plant Biology, 2022, 64, 1087-1101.	4.1	8
5	The NADPH oxidase OsRbohA increases salt tolerance by modulating K+ homeostasis in rice. Crop Journal, 2022, 10, 1611-1622.	2.3	9
6	A novel R3H protein, OsDIP1, confers ABA-mediated adaptation to drought and salinity stress in rice. Plant and Soil, 2022, 477, 501-519.	1.8	1
7	Cell wall \hat{l}^2 -1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. Molecular Plant, 2021, 14, 411-425.	3.9	54
8	BIP130 enhances salt tolerance through modulation of ABA synthesis and scavenging ROS in rice (Oryza sativa L.). Plant Growth Regulation, 2021, 93, 163-173.	1.8	4
9	Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. International Journal of Molecular Sciences, 2021, 22, 1543.	1.8	61
10	Rice calcium/calmodulin-dependent protein kinase directly phosphorylates a mitogen-activated protein kinase kinase to regulate abscisic acid responses. Plant Cell, 2021, 33, 1790-1812.	3.1	34
11	BRASSINOSTEROIDâ€SIGNALING KINASE 1 phosphorylating CALCIUM/CALMODULINâ€DEPENDENT PROTEIN KINASE functions in drought tolerance in maize. New Phytologist, 2021, 231, 695-712.	3.5	26
12	Profiling of rice Cd-tolerant genes through yeast-based cDNA library survival screening. Plant Physiology and Biochemistry, 2020, 155, 429-436.	2.8	5
13	Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots. Plant Signaling and Behavior, 2020, 15, 1813999.	1.2	16
14	Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis. Journal of Experimental Botany, 2019, 70, 5495-5506.	2.4	38
15	Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts. Plant Science, 2019, 289, 110256.	1.7	4
16	Comprehensive Analysis of the Cadmium Tolerance of Abscisic Acid-, Stress- and Ripening-Induced Proteins (ASRs) in Maize. International Journal of Molecular Sciences, 2019, 20, 133.	1.8	20
17	Phosphorylation of bip130 by OsMPK1 regulates abscisic acid-induced antioxidant defense in rice. Biochemical and Biophysical Research Communications, 2019, 514, 750-755.	1.0	8
18	Bioinformatic Exploration of the Targets of Xylem Sap miRNAs in Maize under Cadmium Stress. International Journal of Molecular Sciences, 2019, 20, 1474.	1.8	34

#	Article	IF	Citations
19	Abscisic Acid Inhibits Rice Protein Phosphatase PP45 via H ₂ O ₂ and Relieves Repression of the Ca ²⁺ /CaM-Dependent Protein Kinase DMI3. Plant Cell, 2019, 31, 128-152.	3.1	64
20	Maize Cd-tolerant ZmVTE4 encoding \hat{I}^3 -tocopherol-methyl-transferase alleviated Cd-toxicity through its product $\hat{I}\pm$ -tocopherol. Environmental and Experimental Botany, 2019, 158, 171-179.	2.0	10
21	An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L Plant and Cell Physiology, 2018, 59, 916-929.	1.5	43
22	The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice. Biochemical and Biophysical Research Communications, 2018, 495, 339-345.	1.0	59
23	Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics, 2018, 19, 709.	1.2	34
24	Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biology, 2017, 17, 194.	1.6	106
25	Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize. Plant Physiology, 2016, 171, 1651-1664.	2.3	89
26	Zm <scp>ABA</scp> 2, an interacting protein of Zm <scp>MPK</scp> 5, is involved in abscisic acid biosynthesis and functions. Plant Biotechnology Journal, 2016, 14, 771-782.	4.1	49
27	ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65â€la in Maize Plants. Plant and Cell Physiology, 2015, 56, 1442-1455.	1.5	10
28	Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant and Cell Physiology, 2015, 56, 883-896.	1.5	67
29	OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. Journal of Integrative Plant Biology, 2015, 57, 213-228.	4.1	24
30	A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. Journal of Experimental Botany, 2014, 65, 5795-5809.	2.4	193
31	<scp>OsDMI3</scp> â€mediated activation of <scp>OsMPK1</scp> regulates the activities of antioxidant enzymes in abscisic acid signalling in rice. Plant, Cell and Environment, 2014, 37, 341-352.	2.8	61
32	PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiologiae Plantarum, 2014, 36, 1271-1281.	1.0	76
33	MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. Journal of Experimental Botany, 2013, 64, 3787-3802.	2.4	54
34	ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. Journal of Experimental Botany, 2013, 64, 871-884.	2.4	99
35	Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. Journal of Experimental Botany, 2012, 63, 4835-4847.	2.4	81
36	OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice. Molecular Plant, 2012, 5, 1359-1374.	3.9	90

#	Article	IF	Citations
37	The C ₂ H ₂ â€type Zinc Finger Protein ZFP182 is Involved in Abscisic Acidâ€Induced Antioxidant Defense in Rice ^F . Journal of Integrative Plant Biology, 2012, 54, 500-510.	4.1	92
38	Nitric Oxide Mediates Brassinosteroid-Induced ABA Biosynthesis Involved in Oxidative Stress Tolerance in Maize Leaves. Plant and Cell Physiology, 2011, 52, 181-192.	1.5	167
39	A Novel Mitogenâ€Activated Protein Kinase Gene in Maize (<i>Zea mays</i>), <i>ZmMPK3</i> , is Involved in Response to Diverse Environmental Cues. Journal of Integrative Plant Biology, 2010, 52, 442-452.	4.1	121
40	ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. Journal of Experimental Botany, 2010, 61, 4399-4411.	2.4	122
41	Identity of an ABA-activated 46ÂkDa mitogen-activated protein kinase from Zea mays leaves: partial purification, identification and characterization. Planta, 2009, 230, 239-251.	1.6	39
42	Involvement of Polyamine Oxidase in Abscisic Acidâ€induced Cytosolic Antioxidant Defense in Leaves of Maize. Journal of Integrative Plant Biology, 2009, 51, 225-234.	4.1	45
43	Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from <i>Zea mays</i> . Journal of Integrative Plant Biology, 2009, 51, 287-298.	4.1	38
44	Involvement of Protein Phosphorylation in Water Stressâ€induced Antioxidant Defense in Maize Leaves. Journal of Integrative Plant Biology, 2009, 51, 654-662.	4.1	9
45	Induction of Protection against Paraquatâ€induced Oxidative Damage by Abscisic Acid in Maize Leaves is Mediated through Mitogenâ€activated Protein Kinase. Journal of Integrative Plant Biology, 2009, 51, 961-972.	4.1	42
46	Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. Journal of Experimental Botany, 2009, 60, 3221-3238.	2.4	151
47	Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regulation, 2008, 55, 183-198.	1.8	41
48	Nitric Oxide Reduces Hydrogen Peroxide Accumulation Involved in Water Stressâ€induced Subcellular Antiâ€oxidant Defense in Maize Plants. Journal of Integrative Plant Biology, 2008, 50, 231-243.	4.1	113
49	Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Research, 2008, 18, 577-588.	5.7	58
50	Calcium–calmodulin is required for abscisic acidâ€induced antioxidant defense and functions both upstream and downstream of H 2 O 2 production in leaves of maize (Zea mays) plants. New Phytologist, 2007, 173, 27-38.	3.5	180
51	Nitric oxide induced by hydrogen peroxide mediates abscisic acidâ€induced activation of the mitogenâ€activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 2007, 175, 36-50.	3.5	353
52	Abscisic Acid is a Key Inducer of Hydrogen Peroxide Production in Leaves of Maize Plants Exposed to Water Stress. Plant and Cell Physiology, 2006, 47, 1484-1495.	1.5	105
53	Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. Plant Physiology, 2006, 141, 475-487.	2.3	332
54	Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress. Journal of Integrative Plant Biology, 2005, 47, 1326-1334.	4.1	40

#	Article	IF	CITATIONS
55	Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 2005, 223, 57-68.	1.6	166
56	Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant, Cell and Environment, 2003, 26, 929-939.	2.8	183
57	Role of Abscisic Acid in Water Stress-induced Antioxidant Defense in Leaves of Maize Seedlings. Free Radical Research, 2002, 36, 1001-1015.	1.5	102
58	Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002, 53, 2401-2410.	2.4	718
59	Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002, 215, 1022-1030.	1.6	342
60	Effect of Abscisic Acid on Active Oxygen Species, Antioxidative Defence System and Oxidative Damage in Leaves of Maize Seedlings. Plant and Cell Physiology, 2001, 42, 1265-1273.	1.5	788
61	Proline accumulation in rice seedlings exposed to hydroxyl radical stress in relation to antioxidation. Science Bulletin, 1997, 42, 855-859.	1.7	2