Robert A Bonomo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3975696/publications.pdf

Version: 2024-02-01

336 papers 24,719 citations

9756 73 h-index 9311 143 g-index

357 all docs

357 docs citations

357 times ranked

17335 citing authors

#	Article	IF	Citations
1	Three Decades of Î ² -Lactamase Inhibitors. Clinical Microbiology Reviews, 2010, 23, 160-201.	5.7	1,356
2	Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infectious Diseases, The, 2013, 13, 785-796.	4.6	1,328
3	Carbapenems: Past, Present, and Future. Antimicrobial Agents and Chemotherapy, 2011, 55, 4943-4960.	1.4	1,053
4	Global Challenge of Multidrug-Resistant <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 3471-3484.	1.4	1,027
5	Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clinical Microbiology Reviews, 2017, 30, 409-447.	5.7	773
6	Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas aeruginosa. Clinical Infectious Diseases, 2006, 43, S49-S56.	2.9	558
7	Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients Treated at the Walter Reed Army Medical Center. Antimicrobial Agents and Chemotherapy, 2006, 50, 4114-4123.	1.4	457
8	Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clinical Infectious Diseases, 2016, 63, 234-241.	2.9	433
9	Comparative Genome Sequence Analysis of Multidrug-Resistant <i>Acinetobacter baumannii</i> Journal of Bacteriology, 2008, 190, 8053-8064.	1.0	429
10	Resistance to Colistin in <i>Acinetobacter baumannii</i> Two-Component System. Antimicrobial Agents and Chemotherapy, 2009, 53, 3628-3634.	1.4	426
11	Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends in Microbiology, 2014, 22, 686-696.	3.5	407
12	Carbapenemase-Producing Organisms: A Global Scourge. Clinical Infectious Diseases, 2018, 66, 1290-1297.	2.9	397
13	Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infectious Diseases, The, 2017, 17, 726-734.	4.6	367
14	"Stormy waters ahead― global emergence of carbapenemases. Frontiers in Microbiology, 2013, 4, 48.	1.5	356
15	Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 <i>Klebsiella pneumoniae</i>). Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4988-4993.	3.3	325
16	European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European) Tj ETQq0 0 0	0 r g⁄Ba T/O∖	/erl o24 10 Tf 5
17	Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and <i>Pseudomonas aeruginosa </i> with Difficult-to-Treat Resistance (DTR- <i>P. aeruginosa </i> li>). Clinical Infectious Diseases. 2021. 72. e169-e183.	2.9	292
18	Infectious Diseases, 2021. 72. e169-e165. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant ⟨i>Acinetobacter baumannii⟨ i>, and ⟨i>Stenotrophomonas maltophilia⟨ i> Infections. Clinical Infectious Diseases, 2022, 74, 2089-2114.	2.9	262

#	Article	IF	CITATIONS
19	New \hat{l}^2 -Lactamase Inhibitors: a Therapeutic Renaissance in an MDR World. Antimicrobial Agents and Chemotherapy, 2014, 58, 1835-1846.	1.4	258
20	Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum \hat{I}^2 -lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and <i>Pseudomonas aeruginosa </i> with Difficult-to-Treat Resistance (DTR- <i>P. aeruginosa </i> Clinical Infectious Diseases, 2021, 72, 1109-1116.	2.9	251
21	Isolation and Characterization of an Autoinducer Synthase from <i>Acinetobacter baumannii</i> Journal of Bacteriology, 2008, 190, 3386-3392.	1.0	243
22	Can Ceftazidime-Avibactam and Aztreonam Overcome \hat{l}^2 -Lactam Resistance Conferred by Metallo- \hat{l}^2 -Lactamases in Enterobacteriaceae?. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	217
23	New Treatment Options against Carbapenem-Resistant <i>Acinetobacter baumannii</i> Infections. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	208
24	\hat{l}^2 -Lactamases: A Focus on Current Challenges. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025239.	2.9	205
25	Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. Journal of Antimicrobial Chemotherapy, 2009, 63, 427-437.	1.3	194
26	Genomic and Transcriptomic Analyses of Colistin-Resistant Clinical Isolates of Klebsiella pneumoniae Reveal Multiple Pathways of Resistance. Antimicrobial Agents and Chemotherapy, 2015, 59, 536-543.	1.4	185
27	New Insights into Dissemination and Variation of the Health Care-Associated Pathogen Acinetobacter baumannii from Genomic Analysis. MBio, 2014, 5, e00963-13.	1.8	184
28	The ecology of extended-spectrum \hat{l}^2 -lactamases (ESBLs) in the developed world. Journal of Travel Medicine, 2017, 24, S44-S51.	1.4	182
29	Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and <i>Pseudomonas aeruginosa</i> with Difficult-to-Treat Resistance (DTR- <i>P. aeruginosa</i> li>). Clinical Infectious Diseases, 2022, 75, 187-212.	2.9	182
30	Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. Journal of Antimicrobial Chemotherapy, 2010, 65, 1807-1818.	1.3	176
31	Overview: Global and Local Impact of Antibiotic Resistance. Infectious Disease Clinics of North America, 2016, 30, 313-322.	1.9	175
32	Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infectious Diseases, The, 2020, 20, 731-741.	4.6	174
33	Inhibitor Resistance in the KPC-2 β-Lactamase, a Preeminent Property of This Class A β-Lactamase. Antimicrobial Agents and Chemotherapy, 2010, 54, 890-897.	1.4	161
34	B1-Metallo-Î ² -Lactamases: Where Do We Stand?. Current Drug Targets, 2016, 17, 1029-1050.	1.0	158
35	Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance. PLoS Computational Biology, 2015, 11, e1004493.	1.5	151
36	Colistin Resistance in Carbapenem-Resistant <i>Klebsiella pneumoniae:</i> Laboratory Detection and Impact on Mortality. Clinical Infectious Diseases, 2017, 64, ciw805.	2.9	150

#	Article	IF	Citations
37	A Primer on AmpC \hat{l}^2 -Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clinical Infectious Diseases, 2019, 69, 1446-1455.	2.9	148
38	Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection. PLoS ONE, 2012, 7, e29446.	1.1	147
39	Increasing prevalence and dissemination of NDM-1 metallo-Â-lactamase in India: data from the SMART study (2009). Journal of Antimicrobial Chemotherapy, 2011, 66, 1992-1997.	1.3	143
40	Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods. Clinical Microbiology Reviews, 2016, 29, 1-27.	5.7	140
41	New Î ² -Lactamase Inhibitors in the Clinic. Infectious Disease Clinics of North America, 2016, 30, 441-464.	1.9	138
42	Membrane anchoring stabilizes and favors secretion of New Delhi metallo-Î ² -lactamase. Nature Chemical Biology, 2016, 12, 516-522.	3.9	138
43	A Multinational, Preregistered Cohort Study of \hat{l}^2 -Lactam/ \hat{l}^2 -Lactamase Inhibitor Combinations for Treatment of Bloodstream Infections Due to Extended-Spectrum- \hat{l}^2 -Lactamase-Producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2016, 60, 4159-4169.	1.4	137
44	Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nature Communications, 2019, 10, 334.	5.8	135
45	Surveillance of Carbapenem-Resistant Klebsiella pneumoniae: Tracking Molecular Epidemiology and Outcomes through a Regional Network. Antimicrobial Agents and Chemotherapy, 2014, 58, 4035-4041.	1.4	132
46	Identification of a New Allelic Variant of the Acinetobacter baumannii Cephalosporinase, ADC-7 β-Lactamase: Defining a Unique Family of Class C Enzymes. Antimicrobial Agents and Chemotherapy, 2005, 49, 2941-2948.	1.4	131
47	Genetic Factors Associated with Elevated Carbapenem Resistance in KPC-Producing <i>Klebsiella pneumoniae</i> i>. Antimicrobial Agents and Chemotherapy, 2010, 54, 4201-4207.	1.4	129
48	Inhibition of LpxC Protects Mice from Resistant Acinetobacter baumannii by Modulating Inflammation and Enhancing Phagocytosis. MBio, 2012, 3, .	1.8	126
49	Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas aeruginosa. Clinical Infectious Diseases, 2020, 71, 304-310.	2.9	126
50	Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules, 2020, 10, 720.	1.8	124
51	Cross-class metallo- \hat{l}^2 -lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3745-54.	3.3	122
52	Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infectious Diseases, The, 2022, 22, 401-412.	4.6	122
53	Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2015, 59, 1020-1029.	1.4	121
54	Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo- \hat{l}^2 -lactamase-1. Journal of Medicinal Chemistry, 2017, 60, 7267-7283.	2.9	120

#	Article	IF	CITATIONS
55	Ceftazidime/Avibactam, Meropenem/Vaborbactam, or Both? Clinical and Formulary Considerations. Clinical Infectious Diseases, 2019, 68, 519-524.	2.9	118
56	Strategic Approaches to Overcome Resistance against Gram-Negative Pathogens Using \hat{l}^2 -Lactamase Inhibitors and \hat{l}^2 -Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. Journal of Medicinal Chemistry, 2018, 61, 4067-4086.	2.9	117
57	Gram-Negative Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clinical Infectious Diseases, 2017, 64, S30-S35.	2.9	114
58	Ultrahigh Resolution Structure of a Class A \hat{I}^2 -Lactamase: On the Mechanism and Specificity of the Extended-spectrum SHV-2 Enzyme. Journal of Molecular Biology, 2003, 328, 289-301.	2.0	113
59	The Continuing Challenge of Metallo- \hat{l}^2 -Lactamase Inhibition: Mechanism Matters. Trends in Pharmacological Sciences, 2018, 39, 635-647.	4.0	113
60	Crystal Structure of KPC-2:  Insights into Carbapenemase Activity in Class A β-Lactamases,. Biochemistry, 2007, 46, 5732-5740.	1.2	109
61	Activity of ceftazidime/avibactam against isogenic strains of <i>Escherichia coli</i> containing KPC and SHV \hat{l}^2 -lactamases with single amino acid substitutions in the \hat{l} ©-loop. Journal of Antimicrobial Chemotherapy, 2015, 70, 2279-2286.	1.3	105
62	The urgent need for metallo- \hat{l}^2 -lactamase inhibitors: an unattended global threat. Lancet Infectious Diseases, The, 2022, 22, e28-e34.	4.6	103
63	Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infectious Diseases, 2015, 1, 544-554.	1.8	100
64	A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo- \hat{l}^2 -lactamases. Nature Communications, 2017, 8, 538.	5.8	98
65	Antibiotic-Resistant Gram-Negative Bacterial Infections in Patients With Cancer. Clinical Infectious Diseases, 2014, 59, S335-S339.	2.9	93
66	<i>Klebsiella pneumoniae</i> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from \hat{I}^2 -Lactamase Protein Engineering. MBio, 2017, 8, .	1.8	93
67	WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent "β-Lactam Enhancer― Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	92
68	A Predictive Model of Mortality in Patients With Bloodstream Infections due to Carbapenemase-Producing Enterobacteriaceae. Mayo Clinic Proceedings, 2016, 91, 1362-1371.	1.4	89
69	First Clinical Cases of OXA-48-Producing Carbapenem-Resistant Klebsiella pneumoniae in the United States: the "Menace―Arrives in the New World. Journal of Clinical Microbiology, 2013, 51, 680-683.	1.8	88
70	Variants of \hat{l}^2 -Lactamase KPC-2 That Are Resistant to Inhibition by Avibactam. Antimicrobial Agents and Chemotherapy, 2015, 59, 3710-3717.	1.4	85
71	Exploring the Role of a Conserved Class A Residue in the Ω-Loop of KPC-2 β-Lactamase. Journal of Biological Chemistry, 2012, 287, 31783-31793.	1.6	84
72	ARGONAUT-I: Activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, against Gram-Negative Bacteria, Including Carbapenem-Resistant Nonfermenters and <i>Enterobacteriaceae</i> Extended-Spectrum β-Lactamases and Carbapenemases. Antimicrobial Agents and Chemotherapy, 2019, 63,	1.4	81

5

#	Article	IF	CITATIONS
73	Host Fate is Rapidly Determined by Innate Effector-Microbial Interactions During Acinetobacter baumannii Bacteremia. Journal of Infectious Diseases, 2015, 211, 1296-305.	1.9	79
74	Evolution of New Delhi metallo- \hat{l}^2 -lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. Journal of Biological Chemistry, 2018, 293, 12606-12618.	1.6	79
75	Population Structure of KPC-Producing Klebsiella pneumoniae Isolates from Midwestern U.S. Hospitals. Antimicrobial Agents and Chemotherapy, 2014, 58, 4961-4965.	1.4	78
76	Genome dynamics of multidrug-resistant Acinetobacter baumannii during infection and treatment. Genome Medicine, 2016, 8, 26.	3.6	77
77	Resistance to Novel β-Lactam–β-Lactamase Inhibitor Combinations. Infectious Disease Clinics of North America, 2020, 34, 773-819.	1.9	76
78	Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagnostic Microbiology and Infectious Disease, 2013, 77, 179-194.	0.8	74
79	Relebactam Is a Potent Inhibitor of the KPC-2 \hat{I}^2 -Lactamase and Restores Imipenem Susceptibility in KPC-Producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	74
80	"Silent" Dissemination of Klebsiella pneumoniae Isolates Bearing K. pneumoniae Carbapenemase in a Long-term Care Facility for Children and Young Adults in Northeast Ohio. Clinical Infectious Diseases, 2012, 54, 1314-1321.	2.9	73
81	Acinetobacter baumannii rOmpA vaccine dose alters immune polarization and immunodominant epitopes. Vaccine, 2013, 31, 313-318.	1.7	72
82	Influence of Aging and Environment on Presentation of Infection in Older Adults. Infectious Disease Clinics of North America, 2017, 31, 593-608.	1.9	70
83	An Analysis of the Epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Convergence of Two Evolutionary Mechanisms Creates the "Perfect Storm― Journal of Infectious Diseases, 2018, 217, 82-92.	1.9	70
84	Inhibition of Class A \hat{I}^2 -Lactamases by Carbapenems: Crystallographic Observation of Two Conformations of Meropenem in SHV-1. Journal of the American Chemical Society, 2008, 130, 12656-12662.	6.6	69
85	Inhibition of Klebsiella \hat{l}^2 -Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study. PLoS ONE, 2015, 10, e0136813.	1.1	67
86	Monoclonal Antibody Protects Against Acinetobacter baumannii Infection by Enhancing Bacterial Clearance and Evading Sepsis. Journal of Infectious Diseases, 2017, 216, 489-501.	1.9	67
87	Extended-Spectrum AmpC Cephalosporinase in Acinetobacter baumannii: ADC-56 Confers Resistance to Cefepime. Antimicrobial Agents and Chemotherapy, 2011, 55, 4922-4925.	1.4	66
88	Avibactam and Inhibitor-Resistant SHV \hat{l}^2 -Lactamases. Antimicrobial Agents and Chemotherapy, 2015, 59, 3700-3709.	1.4	66
89	Clinical Evolution of New Delhi Metallo- \hat{l}^2 -Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	64
90	Targeting Multidrug-Resistant <i>Acinetobacter</i> spp.: Sulbactam and the Diazabicyclooctenone \hat{l}^2 -Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent. MBio, 2019, 10, .	1.8	64

#	Article	IF	CITATIONS
91	Overcoming an Extremely Drug Resistant (XDR) Pathogen: Avibactam Restores Susceptibility to Ceftazidime forBurkholderia cepaciaComplex Isolates from Cystic Fibrosis Patients. ACS Infectious Diseases, 2017, 3, 502-511.	1.8	62
92	Successful Treatment of Bloodstream Infection Due to Metallo- \hat{l}^2 -Lactamase-Producing Stenotrophomonas maltophilia in a Renal Transplant Patient. Antimicrobial Agents and Chemotherapy, 2016, 60, 5130-5134.	1.4	61
93	Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa. MBio, 2018, 9, .	1.8	61
94	Design, Synthesis, and Crystal Structures of 6-Alkylidene-2′-Substituted Penicillanic Acid Sulfones as Potent Inhibitors of ⟨i⟩Acinetobacter baumannii⟨/i⟩ OXA-24 Carbapenemase. Journal of the American Chemical Society, 2010, 132, 13320-13331.	6.6	60
95	Novel \hat{l}^2 -lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance. Frontiers in Microbiology, 2013, 4, 392.	1.5	59
96	Monitoring Ceftazidime-Avibactam and Aztreonam Concentrations in the Treatment of a Bloodstream Infection Caused by a Multidrug-Resistant Enterobacter sp. Carrying Both Klebsiella pneumoniae Carbapenemase–4 and New Delhi Metallo-β-Lactamase–1. Clinical Infectious Diseases, 2020, 71, 1095-1098.	2.9	59
97	New Molecular Diagnostic Approaches to Bacterial Infections and Antibacterial Resistance. Annual Review of Medicine, 2018, 69, 379-394.	5.0	58
98	Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward †molecularly targeted†therapy. Expert Review of Anti-Infective Therapy, 2018, 16, 89-110.	2.0	58
99	Elucidating the role of Trp105 in the KPCâ€2 βâ€lactamase. Protein Science, 2010, 19, 1714-1727.	3.1	57
100	Biochemical, Mechanistic, and Spectroscopic Characterization of Metallo- \hat{l}^2 -lactamase VIM-2. Biochemistry, 2014, 53, 7321-7331.	1.2	57
101	Protein determinants of dissemination and host specificity of metallo- \hat{l}^2 -lactamases. Nature Communications, 2019, 10, 3617.	5.8	56
102	Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump. MBio, 2019, 10, .	1.8	56
103	Substrate Selectivity and a Novel Role in Inhibitor Discrimination by Residue 237 in the KPC-2 \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2010, 54, 2867-2877.	1.4	53
104	Transcriptome Remodeling of <i>Acinetobacter baumannii</i> during Infection and Treatment. MBio, 2017, 8, .	1.8	53
105	Rapid Molecular Diagnostics, Antibiotic Treatment Decisions, and Developing Approaches to Inform Empiric Therapy: PRIMERS I and II. Clinical Infectious Diseases, 2016, 62, 181-189.	2.9	52
106	Diabetes Exacerbates Infection via Hyperinflammation by Signaling through TLR4 and RAGE. MBio, 2017, 8, .	1.8	52
107	Avibactam Restores the Susceptibility of Clinical Isolates of Stenotrophomonas maltophilia to Aztreonam. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	52
108	Population Structure, Molecular Epidemiology, and \hat{l}^2 -Lactamase Diversity among Stenotrophomonas maltophilia Isolates in the United States. MBio, 2019, 10, .	1.8	52

#	Article	IF	CITATIONS
109	The Pitt Bacteremia Score Predicts Mortality in Nonbacteremic Infections. Clinical Infectious Diseases, 2020, 70, 1826-1833.	2.9	52
110	Understanding the Molecular Determinants of Substrate and Inhibitor Specificities in the Carbapenemase KPC-2: Exploring the Roles of Arg220 and Glu276. Antimicrobial Agents and Chemotherapy, 2012, 56, 4428-4438.	1.4	51
111	A Standard Numbering Scheme for Class C \hat{l}^2 -Lactamases. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	50
112	Boronic Acid Transition State Inhibitors Active against KPC and Other Class A $\hat{1}^2$ -Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrobial Agents and Chemotherapy, 2016, 60, 1751-1759.	1.4	49
113	Clinical Variants of New Delhi Metallo- \hat{l}^2 -Lactamase Are Evolving To Overcome Zinc Scarcity. ACS Infectious Diseases, 2017, 3, 927-940.	1.8	49
114	Evaluation of Updated Interpretative Criteria for Categorizing <i>Klebsiella pneumoniae</i> with Reduced Carbapenem Susceptibility. Journal of Clinical Microbiology, 2010, 48, 4417-4425.	1.8	48
115	Probing the Interaction of Aspergillomarasmine A with Metallo- \hat{l}^2 -lactamases NDM-1, VIM-2, and IMP-7. ACS Infectious Diseases, 2018, 4, 135-145.	1.8	48
116	Why are we afraid of Acinetobacter baumannii?. Expert Review of Anti-Infective Therapy, 2008, 6, 269-271.	2.0	47
117	Insights into \hat{I}^2 -Lactamases from Burkholderia Species, Two Phylogenetically Related yet Distinct Resistance Determinants. Journal of Biological Chemistry, 2013, 288, 19090-19102.	1.6	47
118	Impact of therapy and strain type on outcomes in urinary tract infections caused by carbapenem-resistant <i>Klebsiella pneumoniae</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 1203-1211.	1.3	47
119	Human serum albumin alters specific genes that can play a role in survival and persistence in Acinetobacter baumannii. Scientific Reports, 2018, 8, 14741.	1.6	47
120	Crystal Structures of KPC-2 \hat{l}^2 -Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226. Antimicrobial Agents and Chemotherapy, 2012, 56, 2713-2718.	1.4	46
121	First Report of an OXA-48-Producing Multidrug-Resistant Proteus mirabilis Strain from Gaza, Palestine. Antimicrobial Agents and Chemotherapy, 2015, 59, 4305-4307.	1.4	46
122	Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum- $\langle b \rangle \hat{l}^2 \langle b \rangle$ -lactamase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2017, 72, dkw513.	1.3	46
123	Allosteric communication in class A \hat{l}^2 -lactamases occurs via cooperative coupling of loop dynamics. ELife, 2021, 10, .	2.8	44
124	The Deadly Impact of Extreme Drug Resistance in Acinetobacter baumannii*. Critical Care Medicine, 2014, 42, 1289-1291.	0.4	43
125	Outcomes of carbapenem-resistant Enterobacteriaceae isolation: Matched analysis. American Journal of Infection Control, 2014, 42, 612-620.	1.1	43
126	Immunomodulatory Peptide IDR-1018 Decreases Implant Infection and Preserves Osseointegration. Clinical Orthopaedics and Related Research, 2015, 473, 2898-2907.	0.7	43

#	Article	IF	CITATIONS
127	Empiric Therapy With Carbapenem-Sparing Regimens for Bloodstream Infections due to Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae: Results From the INCREMENT Cohort. Clinical Infectious Diseases, 2017, 65, 1615-1623.	2.9	43
128	Penicillin Sulfone Inhibitors of Class D \hat{l}^2 -Lactamases. Antimicrobial Agents and Chemotherapy, 2010, 54, 1414-1424.	1.4	42
129	Exploring sequence requirements for C ₃ /C ₄ carboxylate recognition in the <i>Pseudomonas aeruginosa</i> cephalosporinase: Insights into plasticity of the AmpC Î²â€łactamase. Protein Science, 2011, 20, 941-958.	3.1	42
130	Draft Genome Sequence of the Clinical Isolate Acinetobacter nosocomialis Strain M2. Genome Announcements, 2013, 1 , .	0.8	42
131	External guide sequence technology: a path to development of novel antimicrobial therapeutics. Annals of the New York Academy of Sciences, 2015, 1354, 98-110.	1.8	41
132	Predominance of KPC-3 in a Survey for Carbapenemase-Producing Enterobacteriaceae in Portugal. Antimicrobial Agents and Chemotherapy, 2015, 59, 3588-3592.	1.4	41
133	Ertapenem for the treatment of bloodstream infections due to ESBL-producing Enterobacteriaceae: a multinational pre-registered cohort study. Journal of Antimicrobial Chemotherapy, 2016, 71, 1672-1680.	1.3	41
134	Inhibition of the Class C \hat{l}^2 -Lactamase from Acinetobacter spp.: Insights into Effective Inhibitor Design. Biochemistry, 2010, 49, 329-340.	1.2	40
135	Click Chemistry in Lead Optimization of Boronic Acids as \hat{I}^2 -Lactamase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5445-5458.	2.9	39
136	Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. Journal of Antimicrobial Chemotherapy, 2020, 75, 2622-2632.	1.3	39
137	Clinical challenges treating < i > Stenotrophomonas maltophilia < / i > infections: an update. JAC-Antimicrobial Resistance, 2022, 4, dlac040.	0.9	39
138	Identification of Plasmid-Mediated AmpC β-Lactamases in <i>Escherichia coli</i> , <i>Klebsiella</i> spp., and <i>Proteus</i> Species Can Potentially Improve Reporting of Cephalosporin Susceptibility Testing Results. Journal of Clinical Microbiology, 2009, 47, 294-299.	1.8	38
139	Activities of ceftazidime, ceftaroline, and aztreonam alone and combined with avibactam against isogenic Escherichia coli strains expressing selected single \hat{l}^2 -lactamases. Diagnostic Microbiology and Infectious Disease, 2015, 82, 65-69.	0.8	38
140	Nosocomial Outbreak of Extensively Drug-Resistant Acinetobacter baumannii Isolates Containing <i>bla</i> _{OXA-237} Carried on a Plasmid. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	38
141	Cefiderocol: A Novel Siderophore Cephalosporin Defeating Carbapenem-resistant Pathogens. Clinical Infectious Diseases, 2019, 69, S519-S520.	2.9	37
142	Rapid Molecular Diagnostics to Inform Empiric Use of Ceftazidime/Avibactam and Ceftolozane/Tazobactam Against Pseudomonas aeruginosa: PRIMERS IV. Clinical Infectious Diseases, 2019, 68, 1823-1830.	2.9	37
143	Crystal Structures of KPC-2 and SHV-1 \hat{I}^2 -Lactamases in Complex with the Boronic Acid Transition State Analog S02030. Antimicrobial Agents and Chemotherapy, 2016, 60, 1760-1766.	1.4	36
144	Reclaiming the Efficacy of β-Lactam–β-Lactamase Inhibitor Combinations: Avibactam Restores the Susceptibility of CMY-2-Producing Escherichia coli to Ceftazidime. Antimicrobial Agents and Chemotherapy, 2014, 58, 4290-4297.	1.4	35

#	Article	IF	CITATIONS
145	Extensively Drug-Resistant Pseudomonas aeruginosa Isolates Containing <i>bla</i> _{VIM-2} and Elements of Salmonella Genomic Island 2: a New Genetic Resistance Determinant in Northeast Ohio. Antimicrobial Agents and Chemotherapy, 2014, 58, 5929-5935.	1.4	34
146	Inhibition of OXA-1 Î ² -Lactamase by Penems. Antimicrobial Agents and Chemotherapy, 2008, 52, 3135-3143.	1.4	33
147	Early Insights into the Interactions of Different β-Lactam Antibiotics and β-Lactamase Inhibitors against Soluble Forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3. Antimicrobial Agents and Chemotherapy, 2012, 56, 5687-5692.	1.4	33
148	Analysis of \hat{l}^2 -Lactamase Resistance Determinants in Enterobacteriaceae from Chicago Children: a Multicenter Survey. Antimicrobial Agents and Chemotherapy, 2016, 60, 3462-3469.	1.4	33
149	Molecular Diversity and Plasmid Analysis of KPC-Producing Escherichia coli. Antimicrobial Agents and Chemotherapy, 2016, 60, 4073-4081.	1.4	33
150	Role of Asp104 in the SHV \hat{I}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2006, 50, 4124-4131.	1.4	32
151	Host-Specific Enzyme-Substrate Interactions in SPM-1 Metallo-Î ² -Lactamase Are Modulated by Second Sphere Residues. PLoS Pathogens, 2014, 10, e1003817.	2.1	32
152	Biochemical and Structural Analysis of Inhibitors Targeting the ADC-7 Cephalosporinase of <i>Acinetobacter baumannii</i> . Biochemistry, 2014, 53, 7670-7679.	1.2	32
153	Structural Basis of Activity against Aztreonam and Extended Spectrum Cephalosporins for Two Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii. Biochemistry, 2015, 54, 1976-1987.	1.2	31
154	Exploring the potential of boronic acids as inhibitors of OXAâ€24/40 βâ€lactamase. Protein Science, 2017, 26, 515-526.	3.1	30
155	Structure-Based Analysis of Boronic Acids as Inhibitors of <i>Acinetobacter</i> -Derived Cephalosporinase-7, a Unique Class C β-Lactamase. ACS Infectious Diseases, 2018, 4, 325-336.	1.8	30
156	Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion. Frontiers in Microbiology, 2019, 10, 1581.	1.5	30
157	Kinetic analysis of an inhibitor-resistant variant of the OHIO-1 \hat{l}^2 -lactamase, an SHV-family class A enzyme. Biochemical Journal, 1998, 333, 395-400.	1.7	29
158	"Airborne Assault― Critical Care Medicine, 2013, 41, 2042-2044.	0.4	29
159	<i>Editorial Commentary</i> : Ceftazidime-Avibactam and Carbapenem-Resistant Enterobacteriaceae: "We're Gonna Need a Bigger Boat― Clinical Infectious Diseases, 2016, 63, 1619-1621.	2.9	29
160	Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. MBio, 2021, 12, e0103121.	1.8	29
161	Whole-Genome Comparative Analysis of Two Carbapenem-Resistant ST-258Klebsiella pneumoniaeStrains Isolated during a North-Eastern Ohio Outbreak: Differences within the High Heterogeneity Zones. Genome Biology and Evolution, 2016, 8, 2036-2043.	1.1	28
162	Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine \hat{l}^2 -Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. Frontiers in Microbiology, 2018, 9, 622.	1.5	28

#	Article	IF	CITATIONS
163	Identification of Potential Virulence Factors in the Model Strain Acinetobacter baumannii A118. Frontiers in Microbiology, 2019, 10, 1599.	1.5	28
164	Rapid Replacement of Acinetobacter baumannii Strains Accompanied by Changes in Lipooligosaccharide Loci and Resistance Gene Repertoire. MBio, 2019, 10, .	1.8	28
165	Topical triple-antibiotic ointment as a novel therapeutic choice in wound management and infection prevention: a practical perspective. Expert Review of Anti-Infective Therapy, 2007, 5, 773-782.	2.0	27
166	Benefit-risk Evaluation for Diagnostics: A Framework (BED-FRAME). Clinical Infectious Diseases, 2016, 63, 812-817.	2.9	27
167	LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48. Journal of Antimicrobial Chemotherapy, 2016, 71, 2171-2180.	1.3	27
168	A 17-Year Nationwide Study of Burkholderia cepacia Complex Bloodstream Infections Among Patients in the United States Veterans Health Administration. Clinical Infectious Diseases, 2017, 65, 1327-1334.	2.9	27
169	Inhibition of <i>Acinetobacter</i> -Derived Cephalosporinase: Exploring the Carboxylate Recognition Site Using Novel β-Lactamase Inhibitors. ACS Infectious Diseases, 2018, 4, 337-348.	1.8	27
170	Defining the architecture of KPC-2 Carbapenemase: Âidentifying allosteric networks to fight antibiotics resistance. Scientific Reports, 2018, 8, 12916.	1.6	27
171	Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress. Scientific Reports, 2019, 9, 17251.	1.6	27
172	Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl–enzyme conformational dynamics to extend antibiotic resistance. Journal of Biological Chemistry, 2021, 296, 100126.	1.6	27
173	Carbapenem-Resistant Acinetobacter baumannii in U.S. Hospitals: Diversification of Circulating Lineages and Antimicrobial Resistance. MBio, 2022, 13, e0275921.	1.8	27
174	Informing Antibiotic Treatment Decisions: Evaluating Rapid Molecular Diagnostics To Identify Susceptibility and Resistance to Carbapenems against Acinetobacter spp. in PRIMERS III. Journal of Clinical Microbiology, 2017, 55, 134-144.	1.8	26
175	Natural history of Acinetobacter baumannii infection in mice. PLoS ONE, 2019, 14, e0219824.	1.1	26
176	The Reaction Mechanism of Metallo- \hat{l}^2 -Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	26
177	Inactivation of CMY-2 \hat{I}^2 -lactamase by tazobactam: initial mass spectroscopic characterization. BBA - Proteins and Proteomics, 2001, 1547, 196-205.	2.1	25
178	Detection of Extended-Spectrum β-Lactamase and Klebsiella pneumoniae Carbapenemase Genes Directly from Blood Cultures by Use of a Nucleic Acid Microarray. Journal of Clinical Microbiology, 2012, 50, 2901-2904.	1.8	25
179	Multiplex PCR for Identification of Two Capsular Types in Epidemic KPC-Producing Klebsiella pneumoniae Sequence Type 258 Strains. Antimicrobial Agents and Chemotherapy, 2014, 58, 4196-4199.	1.4	25
180	Cryo-electron Microscopy Structure of the Acinetobacter baumannii 70S Ribosome and Implications for New Antibiotic Development. MBio, 2020, 11 , .	1.8	25

#	Article	IF	CITATIONS
181	Distinct Mechanisms of Dissemination of NDM-1 Metallo- \hat{l}^2 -Lactamase in <i>Acinetobacter</i> Species in Argentina. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	25
182	Ligand-Dependent Disorder of the \hat{l} © Loop Observed in Extended-Spectrum SHV-Type \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2011, 55, 2303-2309.	1.4	24
183	Are Staphylococcus intermedius Infections in Humans Cases of Mistaken Identity? A Case Series and Literature Review. Open Forum Infectious Diseases, 2015, 2, ofv110.	0.4	24
184	Community-Acquired Pyelonephritis in Pregnancy Caused by KPC-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2015, 59, 4375-4378.	1.4	24
185	Initial Assessment of the Molecular Epidemiology of bla NDM-1 in Colombia. Antimicrobial Agents and Chemotherapy, 2016, 60, 4346-4350.	1.4	24
186	Exposing a \hat{I}^2 -Lactamase $\hat{a} \in \mathbb{C}$ Twist $\hat{a} \in \mathbb{C}$ the Mechanistic Basis for the High Level of Ceftazidime Resistance in the C69F Variant of the Burkholderia pseudomallei Penl \hat{I}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2016, 60, 777-788.	1.4	24
187	Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar. Journal of Antimicrobial Chemotherapy, 2019, 74, 3497-3504.	1.3	24
188	2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chemical Science, 2021, 12, 2898-2908.	3.7	24
189	Epithelial Innate Immune Response to Acinetobacter baumannii Challenge. Infection and Immunity, 2014, 82, 4458-4465.	1.0	23
190	Complete Sequence of a <i>bla</i> _{KPC} -Harboring Cointegrate Plasmid Isolated from Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 2956-2959.	1.4	23
191	Multidrug Resistant Pseudomonas aeruginosa Causing Prosthetic Valve Endocarditis: A Genetic-Based Chronicle of Evolving Antibiotic Resistance. Open Forum Infectious Diseases, 2016, 3, ofw188.	0.4	23
192	Advancing Diagnostics to Address Antibacterial Resistance: The Diagnostics and Devices Committee of the Antibacterial Resistance Leadership Group. Clinical Infectious Diseases, 2017, 64, S41-S47.	2.9	23
193	<i>In Vitro</i> Activity of Ceftazidime-Avibactam against Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Isolates. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	23
194	The Different Inhibition Mechanisms of OXA-1 and OXA-24 \hat{l}^2 -Lactamases Are Determined by the Stability of Active Site Carboxylated Lysine. Journal of Biological Chemistry, 2014, 289, 6152-6164.	1.6	22
195	A Prospective Observational Study of the Epidemiology, Management, and Outcomes of Skin and Soft Tissue Infections Due to Carbapenem-Resistant Enterobacteriaceae. Open Forum Infectious Diseases, 2017, 4, ofx157.	0.4	22
196	Overview. Infectious Disease Clinics of North America, 2020, 34, 649-658.	1.9	22
197	Insights into the <scp>l</scp> , <scp>d</scp> -Transpeptidases and <scp>d</scp> , <scp>d</scp> -Carboxypeptidase of Mycobacterium abscessus: Ceftaroline, Imipenem, and Novel Diazabicyclooctane Inhibitors. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	22
198	The role of OXA-1 $\hat{1}^2$ -lactamase Asp66 in the stabilization of the active-site carbamate group and in substrate turnover. Biochemical Journal, 2008, 410, 455-462.	1.7	22

#	Article	IF	Citations
199	Structural Characterization of the D179N and D179Y Variants of KPC-2 \hat{l}^2 -Lactamase: \hat{l} ©-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2022, 66, e0241421.	1.4	22
200	Bloodstream Infection Caused by Extended-Spectrum Â-Lactamase-Producing Gram-Negative Bacteria: How to Define the Best Treatment Regimen?. Clinical Infectious Diseases, 2015, 60, 1326-9.	2.9	21
201	Membrane-Bound PenA \hat{l}^2 -Lactamase of Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy, 2016, 60, 1509-1514.	1.4	21
202	Deciphering the evolution of metallo- \hat{l}^2 -lactamases: A journey from the test tube to the bacterial periplasm. Journal of Biological Chemistry, 2022, 298, 101665.	1.6	21
203	Mutations Decreasing Intrinsic \hat{l}^2 -Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2016, 60, 3751-3758.	1.4	20
204	Human fluids alter DNA-acquisition in Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease, 2019, 93, 183-187.	0.8	20
205	A \hat{I}^3 -Lactam Siderophore Antibiotic Effective against Multidrug-Resistant Gram-Negative Bacilli. Journal of Medicinal Chemistry, 2020, 63, 5990-6002.	2.9	20
206	Ureaplasma parvum Prosthetic Joint Infection Detected by PCR. Journal of Clinical Microbiology, 2014, 52, 2248-2250.	1.8	19
207	Elucidating the Role of Residue 67 in IMP-Type Metallo- \hat{l}^2 -Lactamase Evolution. Antimicrobial Agents and Chemotherapy, 2015, 59, 7299-7307.	1.4	19
208	Structural Characterization of Diazabicyclooctane \hat{l}^2 -Lactam $\hat{a} \in \infty$ Enhancers $\hat{a} \in \hat{l}$ Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa. MBio, 2021, 12, .	1.8	19
209	Contamination of Ambient Air with Acinetobacter baumannii on Consecutive Inpatient Days. Journal of Clinical Microbiology, 2015, 53, 2346-2348.	1.8	18
210	AbGRI4, a novel antibiotic resistance island in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates. Journal of Antimicrobial Chemotherapy, 2020, 75, 2760-2768.	1.3	18
211	Resistant Pathogens in Respiratory Tract Infections in Older People. Journal of the American Geriatrics Society, 2002, 50, 236-241.	1.3	17
212	Performance of the Phoenix bacterial identification system compared with disc diffusion methods for identifying extended-spectrum \hat{l}^2 -lactamase, AmpC and KPC producers. Journal of Medical Microbiology, 2009, 58, 774-778.	0.7	17
213	A fluorescent carbapenem for structure function studies of penicillin-binding proteins, \hat{l}^2 -lactamases, and \hat{l}^2 -lactam sensors. Analytical Biochemistry, 2014, 463, 70-74.	1.1	17
214	<i>In Vivo</i> Evolution of CMY-2 to CMY-33 \hat{l}^2 -Lactamase in Escherichia coli Sequence Type 131: Characterization of an Acquired Extended-Spectrum AmpC Conferring Resistance to Cefepime. Antimicrobial Agents and Chemotherapy, 2015, 59, 7483-7488.	1.4	17
215	Failure to Communicate: Transmission of Extensively Drug-Resistant⟨i⟩ have in Communicate: Transmission of Extensively Drug-Resistant⟨i⟩ have in Communicate in Communicat	1.0	17
216	A Multi-Centered Case-Case-Control Study of Factors Associated With Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae Infections in Children and Young Adults. Pediatric Infectious Disease Journal, 2019, 38, 490-495.	1.1	17

#	Article	IF	CITATIONS
217	Efflux pumps as interventions to control infection caused by drug-resistance bacteria. Drug Discovery Today, 2020, 25, 2307-2316.	3.2	17
218	Human Pleural Fluid and Human Serum Albumin Modulate the Behavior of a Hypervirulent and Multidrug-Resistant (MDR) Acinetobacter baumannii Representative Strain. Pathogens, 2021, 10, 471.	1.2	17
219	Monoclonal Antibody Therapy against <i>Acinetobacter baumannii</i> . Infection and Immunity, 2021, 89, e0016221.	1.0	17
220	On the Offensive: the Role of Outer Membrane Vesicles in the Successful Dissemination of New Delhi Metallo- \hat{l}^2 -lactamase (NDM-1). MBio, 2021, 12, e0183621.	1.8	17
221	Association of a geriatric emergency department program with healthcare outcomes among veterans. Journal of the American Geriatrics Society, 2022, 70, 601-608.	1.3	17
222	Accessory Genomes Drive Independent Spread of Carbapenem-Resistant Klebsiella pneumoniae Clonal Groups 258 and 307 in Houston, TX. MBio, 2022, 13, e0049722.	1.8	17
223	SISPA-Seq for rapid whole genome surveys of bacterial isolates. Infection, Genetics and Evolution, 2015, 32, 191-198.	1.0	16
224	Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239. Biochemical Journal, 2018, 475, 273-288.	1.7	16
225	A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions. MBio, 2019, 10, .	1.8	16
226	A comprehensive and contemporary "snapshot―of β-lactamases in carbapenem resistant Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115242.	0.8	16
227	Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Scientific Reports, 2021, 11, 4737.	1.6	16
228	2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-Î ² -Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infectious Diseases, 2021, 7, 2697-2706.	1.8	16
229	Identification of four patients with colistin-resistant <i>Escherichia coli</i> containing the mobile colistin resistance <i>mcr</i> -1 gene from a single health system in Michigan. Infection Control and Hospital Epidemiology, 2019, 40, 1059-1062.	1.0	15
230	"One-Two Punch― Synergistic ß-Lactam Combinations for <i>Mycobacterium abscessus</i> Redundancy in the Inhibition of Peptidoglycan Synthesis Enzymes. Clinical Infectious Diseases, 2021, 73, 1532-1536.	2.9	15
231	Association of Kidney Comorbidities and Acute Kidney Failure With Unfavorable Outcomes After COVID-19 in Individuals With the Sickle Cell Trait. JAMA Internal Medicine, 0, , .	2.6	15
232	Performance of the CLSI Carba NP and the Rosco Carb Screen Assays Using North American Carbapenemase-Producing Enterobacteriaceae and Pseudomonas aeruginosa Isolates. Journal of Clinical Microbiology, 2015, 53, 3370-3373.	1.8	14
233	Exploring the Landscape of Diazabicyclooctane (DBO) Inhibition: Avibactam Inactivation of PER-2 \hat{l}^2 -Lactamase. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	14
234	Interspecies DNA acquisition by a naturally competent Acinetobacter baumannii strain. International Journal of Antimicrobial Agents, 2019, 53, 483-490.	1,1	14

#	Article	IF	Citations
235	A \hat{I}^3 -lactam siderophore antibiotic effective against multidrug-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter spp European Journal of Medicinal Chemistry, 2021, 220, 113436.	2.6	14
236	Risk Factors and Outcomes for Carbapenem-Resistant Klebsiella pneumoniae Isolation, Stratified by Its Multilocus Sequence Typing: ST258 Versus Non-ST258. Open Forum Infectious Diseases, 2016, 3, ofv213.	0.4	13
237	Desirability of Outcome Ranking for the Management of Antimicrobial Therapy (DOOR MAT): A Framework for Assessing Antibiotic Selection Strategies in the Presence of Drug Resistance. Clinical Infectious Diseases, 2021, 73, 344-350.	2.9	13
238	Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	13
239	Inhibiting Mycobacterium abscessus Cell Wall Synthesis: Using a Novel Diazabicyclooctane β-Lactamase Inhibitor To Augment β-Lactam Action. MBio, 2022, 13, e0352921.	1.8	13
240	An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. MBio, 2022, 13, e0373221.	1.8	13
241	Genomic heterogeneity underlies multidrug resistance in Pseudomonas aeruginosa: A population-level analysis beyond susceptibility testing. PLoS ONE, 2022, 17, e0265129.	1.1	13
242	Direct Detection of Indirect Transmission of Streptobacillus moniliformis Rat Bite Fever Infection. Journal of Clinical Microbiology, 2014, 52, 2259-2261.	1.8	12
243	SHV-129: A Gateway to Global Suppressors in the SHV \hat{l}^2 -Lactamase Family?. Molecular Biology and Evolution, 2016, 33, 429-441.	3.5	12
244	1,2,3-Triazolylmethaneboronate: A Structure Activity Relationship Study of a Class of \hat{l}^2 -Lactamase Inhibitors against <i>Acinetobacter baumannii</i> Cephalosporinase. ACS Infectious Diseases, 2020, 6, 1965-1975.	1.8	12
245	Monoclonal Antibody Requires Immunomodulation for Efficacy Against <i>Acinetobacter baumannii</i> Infection. Journal of Infectious Diseases, 2021, 224, 2133-2147.	1.9	12
246	Infections caused by fluoroquinolone-resistant Escherichia coli following transrectal ultrasound-guided biopsy of the prostate. Journal of Global Antimicrobial Resistance, 2014, 2, 71-76.	0.9	11
247	Bacterial Colonization and Antibiotic Resistance in a Prospective Cohort of Newborn Infants During the First Year of Life. Open Forum Infectious Diseases, 2016, 3, ofw221.	0.4	11
248	Ceftazidime-Avibactam for the Treatment of Post-Neurosurgical Meningitis Caused by a Klebsiella pneumoniae carbapenemase (KPC)-Producing Klebsiella pneumoniae. Open Forum Infectious Diseases, 2016, 3, .	0.4	11
249	Emergence of Resistance to Colistin During the Treatment of Bloodstream Infection Caused by Klebsiella pneumoniae Carbapenemase–Producing Klebsiella pneumoniae. Open Forum Infectious Diseases, 2018, 5, ofy054.	0.4	11
250	A Noncanonical Metal Center Drives the Activity of the <i>Sediminispirochaeta smaragdinae</i> Metallo-β-lactamase SPS-1. Biochemistry, 2018, 57, 5218-5229.	1.2	11
251	External validation of the INCREMENT-CPE mortality score in a carbapenem-resistant Klebsiella pneumoniae bacteraemia cohort: the prognostic significance of colistin resistance. International Journal of Antimicrobial Agents, 2019, 54, 442-448.	1.1	11
252	Structural Insights into the Inhibition of the Extended-Spectrum \hat{l}^2 -Lactamase PER-2 by Avibactam. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	11

#	Article	IF	CITATIONS
253	The Role of Trimethoprim/Sulfamethoxazole in the Treatment of Infections Caused by Carbapenem-Resistant Enterobacteriaceae. Open Forum Infectious Diseases, 2019, 6, ofy351.	0.4	11
254	ARGONAUT II Study of the <i>In Vitro</i> Activity of Plazomicin against Carbapenemase-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	11
255	Different Conformations Revealed by NMR Underlie Resistance to Ceftazidime/Avibactam and Susceptibility to Meropenem and Imipenem among D179Y Variants of KPC β-Lactamase. Antimicrobial Agents and Chemotherapy, 2022, 66, e0212421.	1.4	11
256	Consensus on Î ² -Lactamase Nomenclature. Antimicrobial Agents and Chemotherapy, 2022, 66, e0033322.	1.4	11
257	Genome Sequences of Two Carbapenemase-Resistant Klebsiella pneumoniae ST258 Isolates. Genome Announcements, 2014, 2, .	0.8	10
258	Combination therapy for bloodstream infections with carbapenemase-producing Enterobacteriaceae – Authors' reply. Lancet Infectious Diseases, The, 2017, 17, 1020-1021.	4.6	10
259	Evaluation of Sensititre Broth Microdilution Plate for determining the susceptibility of carbapenem-resistant Klebsiella pneumoniae to polymyxins. Diagnostic Microbiology and Infectious Disease, 2018, 91, 89-92.	0.8	10
260	The H-NS Regulator Plays a Role in the Stress Induced by Carbapenemase Expression in Acinetobacter baumannii. MSphere, 2020, 5, .	1.3	10
261	Specific Protein-Membrane Interactions Promote Packaging of Metallo- \hat{l}^2 -Lactamases into Outer Membrane Vesicles. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050721.	1.4	10
262	Interplay between Meropenem and Human Serum Albumin on Expression of Carbapenem Resistance Genes and Natural Competence in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2021, 65, e0101921.	1.4	10
263	OXA-23 \hat{i}^2 -Lactamase Overexpression in Acinetobacter baumannii Drives Physiological Changes Resulting in New Genetic Vulnerabilities. MBio, 2021, 12, e0313721.	1.8	10
264	Penam Sulfones and \hat{l}^2 -Lactamase Inhibition: SA2-13 and the Importance of the C2 Side Chain Length and Composition. PLoS ONE, 2014, 9, e85892.	1.1	9
265	Identification of Occult Fusobacterium nucleatum Central Nervous System Infection by Use of PCR-Electrospray Ionization Mass Spectrometry. Journal of Clinical Microbiology, 2014, 52, 3462-3464.	1.8	9
266	Epidemiology of Carbapenem-Resistant Enterobacteriaceae at a Long-term Acute Care Hospital. Open Forum Infectious Diseases, 2018, 5, ofy224.	0.4	9
267	Characterisation of ST25 NDM-1-producing Acinetobacter spp. strains leading the increase in NDM-1 emergence in Argentina. Journal of Global Antimicrobial Resistance, 2020, 23, 108-110.	0.9	9
268	Drug-Resistant Tuberculosis. Infectious Disease Clinics of North America, 2020, 34, 863-886.	1.9	9
269	Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	9
270	Structural analysis of the boronic acid \hat{l}^2 -lactamase inhibitor vaborbactam binding to Pseudomonas aeruginosa penicillin-binding protein 3. PLoS ONE, 2021, 16, e0258359.	1.1	9

#	Article	IF	CITATIONS
271	Acinetobacter baumannii response to cefiderocol challenge in human urine. Scientific Reports, 2022, 12, .	1.6	9
272	A cold hard menace: A contaminated ice machine as a potential source for transmission of carbapenem-resistant Acinetobacter baumannii. American Journal of Infection Control, 2017, 45, 1273-1275.	1.1	8
273	Molecular characterisation of carbapenem-resistant Enterobacter cloacae complex in Colombia: bla KPC and the †changing landscape†. Journal of Global Antimicrobial Resistance, 2018, 13, 184-189.	0.9	8
274	Risk Factors for and Mechanisms of $\langle i \rangle CO \langle i \rangle listin \langle i \rangle R \langle i \rangle esistance$ Among $\langle i \rangle E \langle i \rangle nterobacterales$: Getting at the CORE of the Issue. Open Forum Infectious Diseases, 2021, 8, ofab145.	0.4	8
275	Emergence of Resistance to Ceftazidime-Avibactam in a Pseudomonas aeruginosa Isolate Producing Derepressed <i>bla</i> _{PDC} in a Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	8
276	Histone-like nucleoid-structuring protein (H-NS) regulatory role in antibiotic resistance in Acinetobacter baumannii. Scientific Reports, 2021, 11, 18414.	1.6	8
277	Human Serum Proteins and Susceptibility of Acinetobacter baumannii to Cefiderocol: Role of Iron Transport. Biomedicines, 2022, 10, 600.	1.4	8
278	Imipenem/Relebactam Resistance in Clinical Isolates of Extensively Drug Resistant Pseudomonas aeruginosa: Inhibitor-Resistant \hat{I}^2 -Lactamases and Their Increasing Importance. Antimicrobial Agents and Chemotherapy, 2022, 66, e0179021.	1.4	8
279	Crystal Structure of Mox-1, a Unique Plasmid-Mediated Class C β-Lactamase with Hydrolytic Activity towards Moxalactam. Antimicrobial Agents and Chemotherapy, 2014, 58, 3914-3920.	1.4	7
280	DISC: Describing Infections of the Spine treated with Ceftaroline. Journal of Global Antimicrobial Resistance, 2018, 13, 146-151.	0.9	7
281	Shedding of multidrug-resistant gram-negative bacilli by colonized patients during procedures and patient care activities. American Journal of Infection Control, 2020, 48, 1336-1340.	1.1	7
282	A Comparison of Molecular Typing Methods Applied to Enterobacter cloacae complex: hsp60 Sequencing, Rep-PCR, and MLST. Pathogens and Immunity, 2017, 2, 23.	1.4	7
283	Staphylococcus aureus and Acinetobacter baumannii Inhibit Osseointegration of Orthopedic Implants. Infection and Immunity, 2022, 90, iai0066921.	1.0	7
284	Core genome MLST and resistome analysis of Klebsiella pneumoniae using a clinically amenable workflow. Diagnostic Microbiology and Infectious Disease, 2020, 97, 114996.	0.8	6
285	The Role of Hydrophobic Nodes in the Dynamics of Class A β-Lactamases. Frontiers in Microbiology, 2021, 12, 720991.	1.5	6
286	First Report of a Verona Integron-Encoded Metallo- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Lactamase-Producing $\langle i \rangle$ Klebsiella pneumoniae $\langle i \rangle$ Infection in a Child in the United States. Journal of the Pediatric Infectious Diseases Society, 2016, 5, e24-e27.	0.6	5
287	Structural and Biochemical Characterization of the Novel CTX-M-151 Extended-Spectrum \hat{l}^2 -Lactamase and Its Inhibition by Avibactam. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	5
288	Interaction of Acinetobacter baumannii with Human Serum Albumin: Does the Host Determine the Outcome?. Antibiotics, 2021, 10, 833.	1.5	5

#	Article	IF	Citations
289	It's too soon to pull the plug on antibiotic cycling. Lancet Infectious Diseases, The, 2018, 18, 493.	4.6	4
290	Structural Insights into Inhibition of the Acinetobacter-Derived Cephalosporinase ADC-7 by Ceftazidime and Its Boronic Acid Transition State Analog. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	4
291	The Ongoing Threat of Antimicrobial Resistance. Infectious Disease Clinics of North America, 2020, 34, xiii-xiv.	1.9	4
292	Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Biomolecules, 2020, 10, 671.	1.8	4
293	Involvement of the Histone-Like Nucleoid Structuring Protein (H-NS) in Acinetobacter baumannii's Natural Transformation. Pathogens, 2021, 10, 1083.	1.2	4
294	Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infectious Diseases, 2022, 8, 811-824.	1.8	4
295	Culture negative empyema in a critically ill child: an opportunity for rapid molecular diagnostics. BMC Anesthesiology, 2014, 14, 107.	0.7	3
296	Prosthetic Valve Endocarditis Caused by Bartonella henselae: A Case Report of Molecular Diagnostics Informing Nonsurgical Management. Open Forum Infectious Diseases, 2016, 3, ofw202.	0.4	3
297	Antibiotic Resistance in the Twenty-First Century: Current Concepts and Future Directions. Infectious Disease Clinics of North America, 2016, 30, xiii-xiv.	1.9	3
298	Predicting \hat{I}^2 -lactam resistance using whole genome sequencing in Klebsiella pneumoniae: the challenge of \hat{I}^2 -lactamase inhibitors. Diagnostic Microbiology and Infectious Disease, 2020, 98, 115149.	0.8	3
299	Colistin resistance in China: from outer membrane to One Health. Lancet Infectious Diseases, The, 2020, 20, 1106-1108.	4.6	3
300	Prosthetic Valve Endocarditis (PVE) Caused by Bartonella henselae: A Case Report of Molecular Methods to Diagnose and Inform Non-Surgical Management. Open Forum Infectious Diseases, 2016, 3, .	0.4	2
301	Simple Screening for Carbapenemase-Producing Enterobacteriaceae by Moxalactam Susceptibility Testing. Journal of Clinical Microbiology, 2017, 55, 2276-2279.	1.8	2
302	1H, 13C, and 15N backbone resonance assignments for KPC-2, a class A serine- \hat{l}^2 -lactamase. Biomolecular NMR Assignments, 2019, 13, 139-142.	0.4	2
303	Accuracy of Direct Antimicrobial Susceptibility Testing of Gram-Negative Bacteria from Positive Blood Cultures Using MicroScan System and Value of Using Expert Rules for \hat{I}^2 -Lactam Agents. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0214821.	1.4	2
304	Penicillanic Acid Sulfones Inactivate the Extended-Spectrum \hat{l}^2 -Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of \hat{l}^2 -Lactamase Inhibition. MBio, 0, , .	1.8	2
305	Zidebactam restores sulbactam susceptibility against carbapenem-resistant Acinetobacter baumannii isolates. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	2
306	ESBLs: An emerging problem in pediatric infectious diseases. Journal of Pediatric Infectious Diseases, 2015, 03, 217-220.	0.1	1

#	Article	IF	CITATIONS
307	Ceftazidime/Avibactam and Ceftolozane/Tazobactam in Treatment of Pulmonary Infections by Imipenem Resistant Pseudomonas aeruginosa. Open Forum Infectious Diseases, 2016, 3, .	0.4	1
308	Application of "Precision Medicine" Through the Molecular Characterization of Extensively Drug Resistant (XDR) Klebsiella pneumoniae in a Multivisceral Transplant Candidate. Open Forum Infectious Diseases, 2016, 3, .	0.4	1
309	Reply to Lesho and Clifford. Clinical Infectious Diseases, 2016, 63, 571-572.	2.9	1
310	2385. Ceftazidime–Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant <i>Pseudomonas aeruginosa</i>). Open Forum Infectious Diseases, 2018, 5, S711-S711.	0.4	1
311	Genomic epidemiology of colistin-resistant Escherichia coli in China. Lancet Microbe, The, 2020, 1, e51-e52.	3.4	1
312	αâ€Triazolylboronic Acids: A Promising Scaffold for Effective Inhibitors of KPCs. ChemMedChem, 2020, 15, 1283-1288.	1.6	1
313	Detection of mcr-1 gene in a clinical Escherichia coli strain in North Carolina: first report. Journal of Global Antimicrobial Resistance, 2021, 25, 154-156.	0.9	1
314	Orthopedic Implant-Associated and Central Venous Catheter-Associated Infections Caused by Microbacterium spp. in the Veterans Affairs Healthcare System from 2000 to 2020. Surgical Infections, 2021, , .	0.7	1
315	The BioWipe: a non-invasive method to detect intestinal carriage of multi-drug resistant gram-negative bacteria. Journal of Chemotherapy, 2021, , 1-3.	0.7	1
316	Carbapenemaseâ€producing Enterobacterales in solid organ transplantation: Tip of the iceberg?. Transplant Infectious Disease, 2021, , .	0.7	1
317	960The Molecular Characterization of Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenem-Resistant Enterobacteriaceae (CRE) in Chicago Children, a two center study. Open Forum Infectious Diseases, 2014, 1, S279-S280.	0.4	0
318	Epidemiology and Management of Skin and Soft Tissue Infection (SSTI) Due to Carbapenem-Resistant Enterobacteriaceae: A Report From The Consortium on Resistance against Carbapenems in Klebsiella pneumoniae (CRaCKle). Open Forum Infectious Diseases, 2016, 3, .	0.4	0
319	Ceftolozane-Tazobactam (C/T) for Severe Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa. Open Forum Infectious Diseases, 2016, 3, .	0.4	O
320	A Change in Paradigm: Diabetes Exacerbates Infection Severity by Hyperinflammation, Not Immunosuppression. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
321	Carbapenem-Resistant Enterobacteriaceae in the Veterans Health Administration: A "Second Epidemic― of Carbapenem Resistance Among Enterobacter cloacae After That of Klebsiella pneumoniae. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
322	Fecal Contamination Contributes to the "Resistome―of Urban Surface Waters in Northeast Brazil. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
323	Molecular Analysis of Colistin Resistance Among Klebsiella pneumoniae Producing K pneumoniae Carbapenemase: Heterogeneity of Genetic Mechanisms. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
324	A 17-Year Nationwide Study of Burkholderia cepacia Complex (Bcc) Blood Stream Infections (BSIs) Among Patients in the Veterans Health Administration (VHA). Open Forum Infectious Diseases, 2016, 3, .	0.4	0

#	Article	IF	CITATIONS
325	Burkholderia cepacia Bacteremias in a Bone Marrow Transplant Unit Associated with Contaminated Water Baths Used for Stem Cell Thawing. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
326	Describing Infections of the Spine Treated With Ceftaroline: The DISC Study—Preliminary Results. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
327	Multi-Center Study of the Molecular Epidemiology of Beta-Lactam Resistance in Enterobacteriaceae From Chicago Area Children: A Continuing Update. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
328	2267. The Effect of Opportunistic Infection (OI) Prophylaxis on the Gastrointestinal Microbiome (GIM) and Immune Reconstitution (IR) in Veterans With HIV and AIDS. Open Forum Infectious Diseases, 2018, 5, S671-S671.	0.4	0
329	698. Nacubactam Inhibits Class A β-lactamases. Open Forum Infectious Diseases, 2018, 5, S251-S252.	0.4	0
330	2336. Resistance Mechanisms and Factors Associated With CTX-M-9 Group Extended-Spectrum \hat{l}^2 -Lactamase (ESBL)-Producing Enterobacteriaceae Infections in Children. Open Forum Infectious Diseases, 2018, 5, S694-S694.	0.4	0
331	700. Identification and Whole-Genome Sequencing (WGS) of Meropenem-Vaborbactam (MV) Resistant Klebsiella pneumoniae (MVRKP) Among Patients Without Prior Exposure to MV: Collateral Damage. Open Forum Infectious Diseases, 2018, 5, S252-S252.	0.4	0
332	Charles C. J. Carpenter Jr (1931–2020). Journal of Infectious Diseases, 0, , .	1.9	0
333	Multiple Substitutions at Ambler Position 244 in SHV Provide Insight Into Importance of Arg244 in Inhibitor and Substrate Binding. FASEB Journal, 2006, 20, A896.	0.2	0
334	Overview of Aminoglycosides and Enzyme-Mediated Bacterial Resistance, Clinical Implications. , 0, , 1-6.		0
335	<i>mBio</i> Welcomes Clinical Research Papers That Advance Our Understanding of Human-Microbe Interactions. MBio, 2022, , e0052722.	1.8	0
336	A Tribute to George A. Jacoby. Antimicrobial Agents and Chemotherapy, 2022, , e0049822.	1.4	0