
Jason Holt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3975214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change, 2014, 4, 211-216.	18.8	434
2	Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate?. Global Environmental Change, 2012, 22, 795-806.	7.8	322
3	Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2979-2989.	4.0	321
4	Anscoordinate density evolving model of the northwest European continental shelf: 1. Model description and density structure. Journal of Geophysical Research, 2001, 106, 14015-14034.	3.3	240
5	Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science, 2013, 70, 1023-1037.	2.5	230
6	Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Global Change Biology, 2014, 20, 3845-3858.	9.5	184
7	Biomass changes and trophic amplification of plankton in a warmer ocean. Global Change Biology, 2014, 20, 2124-2139.	9.5	176
8	Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM. Journal of Marine Systems, 2007, 68, 381-404.	2.1	123
9	A highly spatially resolved ecosystem model for the North West European Continental Shelf. Sarsia, 2001, 86, 423-440.	0.5	110
10	Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences, 2012, 9, 97-117.	3.3	110
11	Error quantification of a high-resolution coupled hydrodynamic–ecosystem coastal–ocean model: Part 1 model overview and assessment of the hydrodynamics. Journal of Marine Systems, 2005, 57, 167-188.	2.1	107
12	Modelling the tidal mixing fronts and seasonal stratification of the Northwest European Continental shelf Research, 2008, 28, 887-903.	1.8	103
13	The potential impacts of climate change on the hydrography of the northwest European continental shelf. Progress in Oceanography, 2010, 86, 361-379.	3.2	95
14	Prospects for improving the representation of coastal and shelf seas in global ocean models. Geoscientific Model Development, 2017, 10, 499-523.	3.6	94
15	Thermohaline circulation of shallow tidal seas. Geophysical Research Letters, 2008, 35, .	4.0	92
16	Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas. Progress in Oceanography, 2016, 140, 91-115.	3.2	88
17	Deep ocean exchange with west-European shelf seas. Ocean Science, 2009, 5, 621-634.	3.4	87
18	The Copernicus Marine Environment Monitoring Service Ocean State Report. Journal of Operational Oceanography, 2016, 9, s235-s320.	1.2	86

#	Article	IF	CITATIONS
19	The carbonate system in the North Sea: Sensitivity and model validation. Journal of Marine Systems, 2012, 102-104, 1-13.	2.1	85
20	AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf. Geoscientific Model Development, 2018, 11, 681-696.	3.6	84
21	The seasonal circulation and volume transport on the northwest European continental shelf: A fineâ€resolution model study. Journal of Geophysical Research, 2008, 113, .	3.3	81
22	Making modelling count - increasing the contribution of shelf-seas community and ecosystem models to policy development and management. Marine Policy, 2015, 61, 291-302.	3.2	81
23	Modelling the hydrodynamics and ecosystem of the North-West European continental shelf for operational oceanography. Journal of Marine Systems, 2007, 65, 417-429.	2.1	78
24	Modelling the global coastal ocean. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 939-951.	3.4	74
25	Regional scale impacts of distinct CO2 additions in the North Sea. Marine Pollution Bulletin, 2008, 56, 1461-1468.	5.0	62
26	The CO5 configuration of the 7†km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution. Geoscientific Model Development, 2017, 10, 2947-2969.	3.6	62
27	Multi-decadal variability and trends in the temperature of the northwest European continental shelf: A model-data synthesis. Progress in Oceanography, 2012, 106, 96-117.	3.2	60
28	Anscoordinate density evolving model of the northwest European continental shelf: 2. Seasonal currents and tides. Journal of Geophysical Research, 2001, 106, 14035-14053.	3.3	58
29	Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean. Progress in Oceanography, 2014, 129, 285-313.	3.2	58
30	Downâ€welling circulation of the northwest European continental shelf: A driving mechanism for the continental shelf carbon pump. Geophysical Research Letters, 2009, 36, .	4.0	57
31	Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model. Science of the Total Environment, 2003, 314-316, 769-785.	8.0	56
32	The tidal range energy potential of the West Coast of the United Kingdom. Applied Ocean Research, 2009, 31, 229-238.	4.1	55
33	A simulation of the southern North Sea in comparison with measurements from the North Sea Project Part 2 Suspended Particulate Matter. Continental Shelf Research, 1999, 19, 1617-1642.	1.8	54
34	Uncertainty in climate projections for the 21st century northwest European shelf seas. Progress in Oceanography, 2016, 148, 56-73.	3.2	47
35	The Role of Advection in Determining the Temperature Structure of the Irish Sea. Journal of Physical Oceanography, 2003, 33, 2288-2306.	1.7	46
36	The influence of initial conditions and open boundary conditions on shelf circulation in a 3D ocean-shelf model of the North East Atlantic. Ocean Dynamics, 2009, 59, 67-81.	2.2	45

#	Article	IF	CITATIONS
37	The effects of tides on the water mass mixing and sea ice in the Arctic Ocean. Journal of Geophysical Research: Oceans, 2015, 120, 6669-6699.	2.6	45
38	The UKC2 regional coupled environmental prediction system. Geoscientific Model Development, 2018, 11, 1-42.	3.6	45
39	A simulation of the Southern North Sea in comparison with measurements from the North Sea Project. Part 1: Temperature. Continental Shelf Research, 1999, 19, 1087-1112.	1.8	44
40	Heterogeneity of impacts of high CO ₂ on the North Western European Shelf. Biogeosciences, 2014, 11, 601-612.	3.3	42
41	Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf. Journal of Marine Systems, 2015, 152, 51-63.	2.1	42
42	Next-generation regional ocean projections for living marine resource management in a changing climate. ICES Journal of Marine Science, 2021, 78, 1969-1987.	2.5	42
43	Modelling large-scale CO 2 leakages in the North Sea. International Journal of Greenhouse Gas Control, 2015, 38, 210-220.	4.6	39
44	Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations. Frontiers in Marine Science, 2019, 6, .	2.5	39
45	Environmental impacts of tidal power schemes. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2009, 162, 165-177.	0.2	37
46	Marine ecosystem models for earth systems applications: The MarQUEST experience. Journal of Marine Systems, 2010, 81, 19-33.	2.1	37
47	Model-Observations Synergy in the Coastal Ocean. Frontiers in Marine Science, 2019, 6, .	2.5	34
48	Projected Change—North Sea. Regional Climate Studies, 2016, , 175-217.	1.2	33
49	Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part3, validation with Continuous Plankton Recorder data. Journal of Marine Systems, 2006, 63, 209-224.	2.1	31
50	Impact and detectability of hypothetical CCS offshore seep scenarios as an aid to storage assurance and risk assessment. International Journal of Greenhouse Gas Control, 2020, 95, 102949.	4.6	31
51	Experiments on Kelvin-Helmholtz billows influenced by boundaries. Geophysical and Astrophysical Fluid Dynamics, 1998, 89, 205-233.	1.2	30
52	Kilometric Scale Modeling of the North West European Shelf Seas: Exploring the Spatial and Temporal Variability of Internal Tides. Journal of Geophysical Research: Oceans, 2018, 123, 688-707.	2.6	29
53	The effects of laterally sloping upper and lower boundaries on waves and instability in stratified shear flows. Journal of Fluid Mechanics, 1995, 286, 49-65.	3.4	27
54	An operational monitoring system to provide indicators of CO2-related variables in the ocean. ICES Journal of Marine Science, 2008, 65, 1498-1503.	2.5	27

#	Article	IF	CITATIONS
55	The propagation of high frequency internal waves in the Celtic Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 2087-2116.	1.4	26
56	The geoid EDIN2000 and mean sea surface topography around the British Isles. Geophysical Journal International, 2004, 157, 565-577.	2.4	26
57	Climateâ€Driven Change in the North Atlantic and Arctic Oceans Can Greatly Reduce the Circulation of the North Sea. Geophysical Research Letters, 2018, 45, 11,827.	4.0	26
58	Validation of an ensemble modelling system for climate projections for the northwest European shelf seas. Progress in Oceanography, 2015, 138, 211-237.	3.2	22
59	Tidal energy potential in UK waters. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2009, 162, 155-164.	0.2	20
60	Modelling temperature and salinity in Liverpool Bay and the Irish Sea: sensitivity to model type and surface forcing. Ocean Science, 2012, 8, 903-913.	3.4	20
61	Advective controls on primary production in the stratified western Irish Sea: An eddy-resolving model study. Journal of Geophysical Research, 2004, 109, .	3.3	19
62	Estimation of global coastal sea level extremes using neural networks. Environmental Research Letters, 2020, 15, 074030.	5.2	19
63	An assessment of the fine-scale eddies in a high-resolution model of the shelf seas west of Great Britain. Ocean Modelling, 2006, 13, 271-291.	2.4	18
64	Hotspots of Dense Water Cascading in the Arctic Ocean: Implications for the Pacific Water Pathways. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016044.	2.6	17
65	The effect of tides on dense water formation in Arctic shelf seas. Ocean Science, 2011, 7, 203-217.	3.4	15
66	Controls on near-bed oxygen concentration on the Northwest European Continental Shelf under a potential future climate scenario. Progress in Oceanography, 2020, 187, 102400.	3.2	13
67	Phytoplankton community structure at contrasting sites in the Irish Sea: a modelling investigation. Estuarine, Coastal and Shelf Science, 2004, 59, 363-383.	2.1	12
68	Challenging Vertical Turbulence Mixing Schemes in a Tidally Energetic Environment: 1. 3â€Ð Shelfâ€Sea Model Assessment. Journal of Geophysical Research: Oceans, 2019, 124, 6360-6387.	2.6	11
69	Assimilation of sea surface temperature in the POL Coastal Ocean Modelling System. Journal of Marine Systems, 2007, 65, 27-40.	2.1	10
70	Conversion of Forest to Agriculture Increases Colored Dissolved Organic Matter in a Subtropical Catchment and Adjacent Coastal Environment. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006295.	3.0	10
71	Ocean shelf exchange, NW European shelf seas: Measurements, estimates and comparisons. Progress in Oceanography, 2022, 202, 102760.	3.2	9

72 Tapping the Tidal Power Potential of the Eastern Irish Sea. , 2008, , .

#	Article	IF	CITATIONS
73	What can ecosystem models tell us about the risk of eutrophication in the North Sea?. Climatic Change, 2015, 132, 111-125.	3.6	8
74	Modelling SPM on the NW European shelf seas. Geological Society Special Publication, 2007, 274, 147-158.	1.3	7
75	Implementation and assessment of a flux limiter based wetting and drying scheme in NEMO. Ocean Modelling, 2020, 155, 101708.	2.4	7
76	Sediment Deposition in Offshore Deeps of the Western North Sea: Questions for Models. Estuarine, Coastal and Shelf Science, 2001, 53, 553-567.	2.1	6
77	Portable multi- and many-core performance for finite-difference or finite-element codes – application to the free-surface component of NEMO (NEMOLite2D 1.0). Geoscientific Model Development, 2018, 11, 3447-3464.	3.6	6
78	Combined Use of Altimetry and In Situ Gravity Data for Coastal Dynamics Studies. Space Science Reviews, 2003, 108, 205-216.	8.1	5
79	Effect of tides on the Indonesian Seas circulation and their role on the volume, heat and salt transports of the Indonesian Throughflow Journal of Geophysical Research: Oceans, 0, , .	2.6	5
80	Towards 3-D Ecosystem Modelling of the Irish Sea. , 2002, , 929.		2
81	EDDY RESOLVED ECOSYSTEM MODELLING IN THE IRISH SEA. , 2003, , .		2
82	Climatic Controls on the Spring Phytoplankton Growing Season in a Temperate Shelf Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	1
83	Designing a Large Scale Autonomous Observing Network: A Set Theory Approach. Frontiers in Marine	2.5	0