## Nicole Ellen Stanford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3975001/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The origin of "rare earth―texture development in extruded Mg-based alloys and its effect on tensile<br>ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2008, 496, 399-408.                            | 2.6 | 703       |
| 2  | Effect of precipitate shape on slip and twinning in magnesium alloys. Acta Materialia, 2011, 59, 1945-1956.                                                                                                                                                             | 3.8 | 344       |
| 3  | Micro-alloying Mg with Y, Ce, Gd and La for texture modification—A comparative study. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010,<br>527, 2669-2677.                                                   | 2.6 | 331       |
| 4  | Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys.<br>Scripta Materialia, 2008, 59, 772-775.                                                                                                                           | 2.6 | 309       |
| 5  | Magnesium extrusion alloys: a review of developments and prospects. International Materials<br>Reviews, 2019, 64, 27-62.                                                                                                                                                | 9.4 | 295       |
| 6  | The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Materialia, 2010, 58, 6773-6783.                                                                                                                           | 3.8 | 293       |
| 7  | Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scripta<br>Materialia, 2008, 58, 179-182.                                                                                                                                          | 2.6 | 278       |
| 8  | Crystallographic variant selection in Ti–6Al–4V. Acta Materialia, 2004, 52, 5215-5224.                                                                                                                                                                                  | 3.8 | 257       |
| 9  | Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al x CoCrFeNi high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 184-193. | 2.6 | 250       |
| 10 | Effect of particles on the formation of deformation twins in a magnesium-based alloy. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009,<br>516, 226-234.                                                     | 2.6 | 217       |
| 11 | Solute strengthening of prismatic slip, basal slip and twinning in Mg and Mg–Zn binary alloys.<br>International Journal of Plasticity, 2013, 47, 165-181.                                                                                                               | 4.1 | 214       |
| 12 | Solute segregation and texture modification in an extruded magnesium alloy containing gadolinium.<br>Scripta Materialia, 2011, 65, 919-921.                                                                                                                             | 2.6 | 207       |
| 13 | Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in tension and compression. Acta Materialia, 2012, 60, 218-228.                                                                                                      | 3.8 | 190       |
| 14 | Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. Journal of Alloys and Compounds, 2017, 726, 885-895.                                                                           | 2.8 | 160       |
| 15 | The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta<br>Materialia, 2015, 82, 447-456.                                                                                                                                   | 3.8 | 129       |
| 16 | Effect of particles in promoting twin nucleation in a Mg–5wt.% Zn alloy. Scripta Materialia, 2010, 63,<br>823-826.                                                                                                                                                      | 2.6 | 128       |
| 17 | Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31. Acta Materialia, 2011, 59, 4866-4874.                                                                                                                                                            | 3.8 | 120       |
| 18 | The effect of calcium on the texture, microstructure and mechanical properties of extruded<br>Mg–Mn–Ca alloys. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2010, 528, 314-322.                               | 2.6 | 118       |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy.<br>Scripta Materialia, 2017, 129, 30-34.                                                                                                                                | 2.6 | 109       |
| 20 | Effect of hot isostatic pressing on the microstructure and mechanical properties of additive<br>manufactured AlxCoCrFeNi high entropy alloys. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2018, 733, 59-70. | 2.6 | 109       |
| 21 | Slip mode dependency of dislocation shearing and looping of precipitates in Mg alloy WE43. Acta<br>Materialia, 2018, 146, 55-62.                                                                                                                                       | 3.8 | 108       |
| 22 | The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 2 –<br>recrystallisation and texture development. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2013, 565, 469-475.        | 2.6 | 93        |
| 23 | Investigation of precipitate hardening of slip and twinning in Mg5%Zn by micropillar compression.<br>Acta Materialia, 2015, 100, 53-63.                                                                                                                                | 3.8 | 93        |
| 24 | Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 734-743.                                                                           | 1.1 | 91        |
| 25 | Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2984-2995.                                                                         | 1.1 | 91        |
| 26 | Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scripta<br>Materialia, 2013, 69, 13-16.                                                                                                                                        | 2.6 | 88        |
| 27 | Texture selection mechanisms in uniaxially extruded magnesium alloys. Scripta Materialia, 2010, 63, 721-724.                                                                                                                                                           | 2.6 | 84        |
| 28 | Deformation Twinning and the Hall–Petch Relation in Commercial Purity Ti. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 934-944.                                                                                 | 1.1 | 76        |
| 29 | Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction. Acta Materialia, 2014, 78, 1-13.                                                                                                                             | 3.8 | 71        |
| 30 | Strain partitioning in dual-phase steels containing tempered martensite. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 90-99.                                                                      | 2.6 | 71        |
| 31 | Plastic relaxation of the internal stress induced by twinning. Acta Materialia, 2013, 61, 7859-7867.                                                                                                                                                                   | 3.8 | 70        |
| 32 | Thermo-mechanical processing and the shape memory effect in an Fe–Mn–Si-based shape memory alloy.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2006, 422, 352-359.                                        | 2.6 | 69        |
| 33 | The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 1—Hot<br>deformation behaviour. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2013, 565, 459-468.                          | 2.6 | 67        |
| 34 | Influence of cooling rate on the microstructure and corrosion behavior of Al–Fe alloys. Corrosion Science, 2015, 100, 396-403.                                                                                                                                         | 3.0 | 61        |
| 35 | In situ observations of Widmanstäten ferrite formation in a low-carbon steel. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 407,<br>127-134.                                                            | 2.6 | 60        |
| 36 | The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress–strain response and microstructural development in a dual phase steel. International Journal of Fatigue, 2015, 80, 341-348.                                                           | 2.8 | 59        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Twinning in magnesium-based lamellar microstructures. Scripta Materialia, 2012, 67, 704-707.                                                                                                                                                                            | 2.6 | 58        |
| 38 | Role of microstructure in the low cycle fatigue of multi-phase steels. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 288-296.                                                                       | 2.6 | 58        |
| 39 | Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting. Materials and Design, 2015, 88, 537-549.                                                                                                                  | 3.3 | 58        |
| 40 | Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel. Acta<br>Materialia, 2017, 134, 1-15.                                                                                                                                      | 3.8 | 58        |
| 41 | Effect of martensite volume fraction on low cycle fatigue behaviour of dual phase steels:<br>Experimental and microstructural investigation. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2015, 638, 296-304. | 2.6 | 57        |
| 42 | Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile<br>Mn-based TRIP alloy. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2016, 653, 35-42.                      | 2.6 | 57        |
| 43 | Seeding of single crystal superalloys––role of seed melt-back on casting defects. Scripta Materialia,<br>2004, 50, 159-163.                                                                                                                                             | 2.6 | 55        |
| 44 | Fine grained AZ31 produced by conventional thermo-mechanical processing. Journal of Alloys and Compounds, 2008, 466, 182-188.                                                                                                                                           | 2.8 | 53        |
| 45 | Deformation mechanisms in Mg alloys and the challenge of extending room-temperature plasticity.<br>Jom, 2009, 61, 19-24.                                                                                                                                                | 0.9 | 49        |
| 46 | General trends between solute segregation tendency and grain boundary character in aluminum - An<br>ab inito study. Acta Materialia, 2018, 158, 257-268.                                                                                                                | 3.8 | 49        |
| 47 | Processing and properties of Mg–6Gd–1Zn–0.6Zr. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2011, 528, 3659-3665.                                                                                             | 2.6 | 47        |
| 48 | Processing and properties of Mg–6Gd–1Zn–0.6Zr: Part 1 – Recrystallisation and texture development.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2011, 528, 3653-3658.                                      | 2.6 | 47        |
| 49 | The Effect of Mn-rich Precipitates on the Strength of AZ31 Extrudates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4830-4843.                                                                                      | 1.1 | 47        |
| 50 | Influence of microstructure on strain distribution in Mg–3Al–1Zn. Scripta Materialia, 2007, 57,<br>1125-1128.                                                                                                                                                           | 2.6 | 46        |
| 51 | Effect of Si on the reversibility of stress-induced martensite in Fe–Mn–Si shape memory alloys. Acta<br>Materialia, 2010, 58, 6752-6762.                                                                                                                                | 3.8 | 42        |
| 52 | Re-examination of the effect of NbC precipitation on shape memory in Fe–Mn–Si-based alloys. Scripta<br>Materialia, 2008, 58, 583-586.                                                                                                                                   | 2.6 | 41        |
| 53 | Effect of NbC and TiC precipitation on shape memory in an iron-based alloy. Journal of Materials Science, 2006, 41, 4883-4891.                                                                                                                                          | 1.7 | 40        |
| 54 | Correlation of tensile test properties with those predicted by the shear punch test. Materials & Design, 2013, 47, 258-266.                                                                                                                                             | 5.1 | 40        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Quantification of precipitate hardening of twin nucleation and growth in Mg and Mg-5Zn using micro-pillar compression. Acta Materialia, 2019, 163, 68-77.                                                                                                        | 3.8 | 38        |
| 56 | Observation of {11 <ovl>2</ovl> 1} twinning in a Mg-based alloy. Philosophical Magazine Letters, 2008, 88, 379-386.                                                                                                                                              | 0.5 | 37        |
| 57 | Crystallographic variant selection in α–β brass. Acta Materialia, 2005, 53, 859-867.                                                                                                                                                                             | 3.8 | 33        |
| 58 | Strength and biaxial formability of cryo-rolled 2024 aluminium subject to concurrent recovery and precipitation. Acta Materialia, 2013, 61, 5278-5289.                                                                                                           | 3.8 | 33        |
| 59 | Effect of deformation on microstructure and mechanical properties of dual phase steel produced via<br>strip casting simulation. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2016, 651, 291-305.       | 2.6 | 32        |
| 60 | Effect of Alloying Additions on the SFE, Neel Temperature and Shape Memory Effect in Fe-Mn-Si-based Alloys. ISIJ International, 2007, 47, 883-889.                                                                                                               | 0.6 | 30        |
| 61 | Atom Probe Tomography of Solute Distributions in Mg-Based Alloys. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2480-2487.                                                                                 | 1.1 | 29        |
| 62 | Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting. Materials Characterization, 2016, 112, 259-268.                                                                                    | 1.9 | 29        |
| 63 | Effect of second-phase particles on shape memory in Fe–Mn–Si-based alloys. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 407-415.                                                        | 2.6 | 27        |
| 64 | Effect of coiling treatment on microstructural development and precipitate strengthening of a strip cast steel. Acta Materialia, 2016, 115, 167-177.                                                                                                             | 3.8 | 27        |
| 65 | Austenite stability in Fe–Mn–Si-based shape memory alloys. Journal of Alloys and Compounds, 2007,<br>430, 107-115.                                                                                                                                               | 2.8 | 24        |
| 66 | Deformation and annealing of (011)[011Ì"] oriented Al single crystals. Acta Materialia, 2003, 51, 665-676.                                                                                                                                                       | 3.8 | 23        |
| 67 | The formation of randomly textured magnesium alloy sheet through rapid solidification. Acta<br>Materialia, 2010, 58, 3642-3654.                                                                                                                                  | 3.8 | 23        |
| 68 | Formability of cryo-rolled aluminium in uniaxial and biaxial tension. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 555, 148-153.                                                                 | 2.6 | 22        |
| 69 | Effect of martensite morphology on low cycle fatigue behaviour of dual phase steels: Experimental<br>and microstructural investigation. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2015, 644, 53-60. | 2.6 | 22        |
| 70 | Austenite plasticity mechanisms and their behavior during cyclic loading. International Journal of<br>Fatigue, 2018, 106, 185-195.                                                                                                                               | 2.8 | 22        |
| 71 | In-situ observations of phase transformations in titanium. Jom, 2006, 58, 67-69.                                                                                                                                                                                 | 0.9 | 21        |
| 72 | The role of shear banding on the fatigue ductility of ultrafine-grained aluminium. Scripta Materialia, 2013, 68, 269-272.                                                                                                                                        | 2.6 | 21        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of orientation stability on recrystallization textures of deformed aluminium single crystals.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2003, 348, 154-162.    | 2.6 | 20        |
| 74 | Shear bands evolution in ultrafine-grained aluminium under cyclic loading. Scripta Materialia, 2013,<br>68, 821-824.                                                                                                                  | 2.6 | 20        |
| 75 | Rapid synthesis of Bi and Sb sulfides using electric discharge assisted mechanical milling. Journal of<br>Alloys and Compounds, 2008, 455, 285-288.                                                                                   | 2.8 | 18        |
| 76 | Static recrystallization of strip cast alloys in the presence of complex nano-sulfide and nitride precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 581, 39-47. | 2.6 | 18        |
| 77 | Effect of hot working on dynamic recrystallisation study of as-cast austenitic stainless steel.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2012, 556, 685-695.         | 2.6 | 17        |
| 78 | Anisotropic compressive behaviour of turbostratic graphite in carbon fibre. Applied Materials Today, 2017, 9, 196-203.                                                                                                                | 2.3 | 17        |
| 79 | Emerging Hot Topics and Research Questions in Wrought Magnesium Alloy Development. Jom, 2020, 72, 2561-2567.                                                                                                                          | 0.9 | 17        |
| 80 | The electronic origins of the "rare earth―texture effect in magnesium alloys. Scientific Reports, 2021,<br>11, 14159.                                                                                                                 | 1.6 | 17        |
| 81 | A critical assessment of work hardening in TWIP steels through micropillar compression. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017,<br>696, 42-51.                   | 2.6 | 15        |
| 82 | Na Partitioning During Thermomechanical Processing of an Mg-Sn-Zn-Na Alloy. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5216-5225.                                            | 1.1 | 14        |
| 83 | Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the<br>Liquid Phase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2015, 46, 5561-5571.   | 1.1 | 14        |
| 84 | Suppression of Ms temperature by carbon partitioning from carbon-supersaturated ferrite to metastable austenite during intercritical annealing. Materials & Design, 2013, 51, 409-414.                                                | 5.1 | 13        |
| 85 | Effect of molybdenum on phase transformation and microstructural evolution of strip cast steels containing niobium. Journal of Materials Science, 2019, 54, 1769-1784.                                                                | 1.7 | 12        |
| 86 | Enhanced strength-ductility of medium Mn steel by quenching, partitioning and tempering. Materials<br>Science and Technology, 2020, 36, 584-597.                                                                                      | 0.8 | 12        |
| 87 | Observations using atomic force microscopy of surface-relief associated with deformation in cube-oriented single crystals. Scripta Materialia, 2001, 44, 941-946.                                                                     | 2.6 | 11        |
| 88 | A critical assessment of deformation twinning and epsilon martensite formation in austenitic alloys during complex forming operations. Materials Characterization, 2018, 145, 423-434.                                                | 1.9 | 11        |
| 89 | Local topology and its effects on grain boundary and solute segregation in HCP magnesium.<br>Materialia, 2019, 6, 100258.                                                                                                             | 1.3 | 11        |
| 90 | Grain Refinement of an Extruded Mg Alloy via Na Microalloying. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2466-2469.                                                         | 1.1 | 10        |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The effect of molybdenum on interphase precipitation at 700°C in a strip-cast low-carbon niobium<br>steel. Materials Characterization, 2020, 166, 110444.                                                                                                               | 1.9 | 10        |
| 92  | The Martensitic Transformation Texture in Ti-6Al-4V. Materials Science Forum, 2005, 495-497, 669-674.                                                                                                                                                                   | 0.3 | 9         |
| 93  | Optimization of Alloy Design and Hot Rolling Conditions for Shape Memory in Fe–Mn–Si-based Alloys.<br>ISIJ International, 2006, 46, 1703-1711.                                                                                                                          | 0.6 | 9         |
| 94  | The effect of molybdenum on clustering and precipitation behaviour of strip-cast steels containing niobium. Materialia, 2019, 8, 100462.                                                                                                                                | 1.3 | 9         |
| 95  | Martensitic surface relief in an Fe–Mn–Si-based alloy strained by bending. Scripta Materialia, 2005, 53,<br>739-744.                                                                                                                                                    | 2.6 | 8         |
| 96  | Reduction of PbS and Sb2S3 with elemental Fe and Mg in dusty plasma environment created during electrical discharge assisted mechanical milling (EDAMM). Journal of Alloys and Compounds, 2009, 467, 477-484.                                                           | 2.8 | 8         |
| 97  | Complex precipitation phenomena in strip cast steels with high sulfur and copper contents. Journal of Applied Crystallography, 2016, 49, 1777-1785.                                                                                                                     | 1.9 | 8         |
| 98  | Solidification Behaviour and Microstructural Development of Iron-based Alloys under Conditions<br>Pertinent to Strip Casting – 200 Series Stainless Steels. ISIJ International, 2013, 53, 2152-2159.                                                                    | 0.6 | 7         |
| 99  | Rapid Formation of Diamond-Like Nano-Carbons in a Gas Bubble Discharge in Liquid Ethanol. Plasma<br>Chemistry and Plasma Processing, 2018, 38, 75-87.                                                                                                                   | 1.1 | 7         |
| 100 | Martensite/particle interactions and the shape memory effect in an Fe–Mn–Si-based alloy. Journal of<br>Materials Science, 2007, 42, 4334-4343.                                                                                                                          | 1.7 | 6         |
| 101 | Recrystallisation of Magnesium Alloys Containing Rare-Earth Elements. Materials Science Forum, 2013, 753, 297-300.                                                                                                                                                      | 0.3 | 6         |
| 102 | The Microstructure, Antimicrobial Properties, and Corrosion Resistance of Cuâ€Bearing Strip Cast<br>Steel. Advanced Engineering Materials, 2020, 22, 1901265.                                                                                                           | 1.6 | 6         |
| 103 | Characterisation of Ni–Ti thin films produced by filtered arc deposition. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 172-179.                                                                    | 2.6 | 5         |
| 104 | Castability and Microstructural Development of Iron-based Alloys under Conditions Pertinent to<br>Strip Casting – Specialty Fe–Cr–Al Alloys. ISIJ International, 2013, 53, 1803-1811.                                                                                   | 0.6 | 5         |
| 105 | Static recrystallisation of steels produced by direct strip casting – The effect of carbon and vanadium concentration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 671, 147-157.                          | 2.6 | 5         |
| 106 | The Effect of Nb Micro-alloying on the Bainitic Phase Transformation Under Strip Casting Conditions.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49,<br>1021-1025.                                                  | 1.1 | 5         |
| 107 | The contrasting fracture behaviour of twin boundaries and general boundaries – A first principles<br>study based on experimental observation. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2020, 781, 139225. | 2.6 | 5         |
| 108 | Grain boundary kinetics in magnesium alloys from first principles. Computational Materials Science, 2022, 210, 111042.                                                                                                                                                  | 1.4 | 5         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Static recrystallisation study of as-cast austenitic stainless steel. Materials Science & Engineering<br>A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 118-125. | 2.6 | 4         |
| 110 | Cryo-Rolling and Formability of 2024 Aluminium. Materials Science Forum, 2013, 765, 434-438.                                                                                                     | 0.3 | 4         |
| 111 | Oxygenation of conducting polymers facilitated by structureâ€breaking anions. Journal of Polymer<br>Science, 2021, 59, 745-753.                                                                  | 2.0 | 4         |
| 112 | Rapid synthesis of TiC–Fe3C composite by electric discharge assisted mechanical milling of ilmenite<br>(FeTiO3) with graphite. Journal of Alloys and Compounds, 2008, 459, 498-500.              | 2.8 | 3         |
| 113 | Atomic Scale Simulation of Deformation in Magnesium Single Crystals. Materials Science Forum, 2010, 638-642, 1585-1590.                                                                          | 0.3 | 3         |
| 114 | Wetting Behavior and Evolution of Microstructure of Sn–3.5Ag Solder Alloy on Electroplated 304<br>Stainless Steel Substrates. Transactions of the Indian Institute of Metals, 2012, 65, 713-717. | 0.7 | 3         |
| 115 | Recrystallization Kinetic Behavior of Copper-Bearing Strip Cast Steel. Steel Research International, 2013, 84, 1273-1280.                                                                        | 1.0 | 2         |
| 116 | The Effect of Molybdenum on Precipitation Behaviour in Austenite of Strip-Cast Steels Containing<br>Niobium. Metals, 2020, 10, 1330.                                                             | 1.0 | 2         |
| 117 | Effect of quenching temperature on reversible martensitic transformation in a Cu–Al–Be alloy.<br>Philosophical Magazine Letters, 2007, 87, 483-492.                                              | 0.5 | 1         |
| 118 | Influence of Coiling on Microstructural Evolution and Mechanical Properties of Strip-Cast<br>Low-Carbon Low-Niobium Steel. Materials Science Forum, 2016, 879, 1182-1187.                        | 0.3 | 1         |
| 119 | Introducing Alloys: A Journal for Fundamental and Applied Research. , 2022, 1, 1-2.                                                                                                              |     | 1         |
| 120 | The microstructure of high manganese TWIP steels produced via simulated direct strip casting.<br>Materials Science and Technology, 2022, 38, 30-38.                                              | 0.8 | 1         |
| 121 | Fine Grained AZ31 by Conventional Thermo-Mechanical Processing. Materials Science Forum, 0, 618-619, 239-244.                                                                                    | 0.3 | 0         |
| 122 | The Effect of Molybdenum on Clustering and Precipitation Behaviour of Strip-Cast Steels Containing<br>Niobium. SSRN Electronic Journal, 2019, , .                                                | 0.4 | 0         |
| 123 | The Effect of Direct Strip Casting on the Kinetics of Phase Transformation of a Dual Phase Steel.<br>Metals, 2022, 12, 170.                                                                      | 1.0 | 0         |
| 124 | The Energetics and Topology of Grain Boundaries in Magnesium: An Ab Initio Study. , 2022, 1, 15-30.                                                                                              |     | 0         |