List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39750/publications.pdf Version: 2024-02-01

D RELIONNE

#	Article	IF	CITATIONS
1	Highâ€Efficiency Ionâ€Exchange Doping of Conducting Polymers. Advanced Materials, 2022, 34, e2102988.	11.1	67
2	Diindolocarbazole – achieving multiresonant thermally activated delayed fluorescence without the need for acceptor units. Materials Horizons, 2022, 9, 1068-1080.	6.4	48
3	An S-shaped double helicene showing both multi-resonance thermally activated delayed fluorescence and circularly polarized luminescence. Journal of Materials Chemistry C, 2022, 10, 4861-4870.	2.7	23
4	Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates. Chemical Science, 2022, 13, 1665-1674.	3.7	30
5	Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots. Nanoscale, 2022, 14, 3826-3833.	2.8	7
6	Enhancing Thermally Activated Delayed Fluorescence by Fine-Tuning the Dendron Donor Strength. Journal of Physical Chemistry B, 2022, 126, 552-562.	1.2	7
7	Tuning Short Contacts between Polymer Chains To Enhance Charge Transport in Amorphous Donor–Acceptor Polymers. Journal of Physical Chemistry C, 2022, 126, 3118-3126.	1.5	8
8	Thermally activated intra-chain charge transport in high charge-carrier mobility copolymers. Journal of Chemical Physics, 2022, 156, 084115.	1.2	4
9	Structural and Dynamic Disorder, Not Ionic Trapping, Controls Charge Transport in Highly Doped Conducting Polymers. Journal of the American Chemical Society, 2022, 144, 3005-3019.	6.6	45
10	From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular Semiconductor. Chemistry of Materials, 2022, 34, 2238-2248.	3.2	11
11	Band transport by large Fröhlich polarons in MXenes. Nature Physics, 2022, 18, 544-550.	6.5	40
12	Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature. Journal of Chemical Physics, 2022, 156, 104302.	1.2	4
13	Solution Synthesis and Characterization of a Long and Curved Graphene Nanoribbon with Hybrid Cove–Armchair–Gulf Edge Structures. Advanced Science, 2022, 9, e2200708.	5.6	12
14	Dinaphthotetrathienoacenes: Synthesis, Characterization, and Applications in Organic Fieldâ€Effect Transistors. Advanced Science, 2022, 9, e2105674.	5.6	6
15	Cove-Edged Graphene Nanoribbons with Incorporation of Periodic Zigzag-Edge Segments. Journal of the American Chemical Society, 2022, 144, 228-235.	6.6	28
16	Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. Jacs Au, 2022, 2, 136-149.	3.6	12
17	Charge transfer complexes of a benzothienobenzothiophene derivative and their implementation as active layer in solution-processed thin film organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 7319-7328.	2.7	11
18	Doping of semicrystalline conjugated polymers: dopants within alkyl chains do it better. Journal of Materials Chemistry C, 2022, 10, 13815-13825.	2.7	8

#	Article	IF	CITATIONS
19	Excited-State Modulation in Donor-Substituted Multiresonant Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2022, 14, 22341-22352.	4.0	47
20	Understanding Solution State Conformation and Aggregate Structure of Conjugated Polymers via Small Angle X-ray Scattering. Macromolecules, 2022, 55, 4353-4366.	2.2	22
21	Emission and Absorption Tuning in TADF B,Nâ€Doped Heptacenes: Toward Idealâ€Blue Hyperfluorescent OLEDs. Advanced Optical Materials, 2022, 10, .	3.6	28
22	Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key!. Journal of Chemical Theory and Computation, 2022, 18, 4903-4918.	2.3	32
23	Electronic Structure and Optical Properties of Mixed Iodine/Bromine Lead Perovskites. To Mix or Not to Mix?. Advanced Optical Materials, 2021, 9, 2001832.	3.6	17
24	Combined healing and doping of transition metal dichalcogenides through molecular functionalization. Journal of Materials Chemistry C, 2021, 9, 16247-16256.	2.7	7
25	Electron spin as fingerprint for charge generation and transport in doped organic semiconductors. Journal of Materials Chemistry C, 2021, 9, 2944-2954.	2.7	15
26	Understanding how Lewis acids dope organic semiconductors: a "complex―story. Chemical Science, 2021, 12, 7012-7022.	3.7	23
27	Analysis of External and Internal Disorder to Understand Bandâ€Like Transport in nâ€Type Organic Semiconductors. Advanced Materials, 2021, 33, 2007870.	11.1	24
28	Cation Engineering for Resonant Energy Level Alignment in Two-Dimensional Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 2528-2535.	2.1	17
29	Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. Science Advances, 2021, 7, .	4.7	28
30	Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Journal of the American Chemical Society, 2021, 143, 5654-5658.	6.6	52
31	2D MXene–Molecular Hybrid Additive for Highâ€Performance Ambipolar Polymer Fieldâ€Effect Transistors and Logic Gates. Advanced Materials, 2021, 33, e2008215.	11.1	26
32	Molecular Doping of 2D Indium Selenide for Ultrahigh Performance and Lowâ€Power Consumption Broadband Photodetectors. Advanced Functional Materials, 2021, 31, 2103353.	7.8	17
33	19â€2: <i>Invited Paper:</i> Design of Multiâ€Resonance Thermally Activated Delayed Fluorescence Materials for Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 228-231.	0.1	1
34	Reducing Nonâ€Radiative Voltage Losses by Methylation of Push–Pull Molecular Donors in Organic Solar Cells. ChemSusChem, 2021, 14, 3622-3631.	3.6	4
35	Hypsochromic Shift of Multipleâ€Resonanceâ€Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angewandte Chemie - International Edition, 2021, 60, 17910-17914.	7.2	152
36	Hypsochromic Shift of Multipleâ€Resonanceâ€Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angewandte Chemie, 2021, 133, 18054-18058.	1.6	39

#	Article	IF	CITATIONS
37	Light-Programmable Logic-in-Memory in 2D Semiconductors Enabled by Supramolecular Functionalization: Photoresponsive Collective Effect of Aligned Molecular Dipoles. ACS Nano, 2021, 15, 13732-13741.	7.3	18
38	Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Science Advances, 2021, 7, .	4.7	68
39	Long-Range Interactions Boost Singlet Exciton Diffusion in Nanofibers of π-Extended Polymer Chains. Journal of Physical Chemistry Letters, 2021, 12, 8188-8193.	2.1	19
40	Substitution Effects on a New Pyridylbenzimidazole Acceptor for Thermally Activated Delayed Fluorescence and Their Use in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100846.	3.6	6
41	The role of charge recombination to triplet excitons in organic solar cells. Nature, 2021, 597, 666-671.	13.7	225
42	Spiro-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Nonradiative Decay for High-Quantum-Efficiency, Low-Roll-Off, Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 44628-44640.	4.0	15
43	Measurement of the conformational switching of azobenzenes from the macro- to attomolar scale in self-assembled 2D and 3D nanostructures. Physical Chemistry Chemical Physics, 2021, 23, 11698-11708.	1.3	3
44	Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors. Nature Communications, 2021, 12, 6640.	5.8	18
45	Forum on Artificial Intelligence/Machine Learning for Design and Development of Applied Materials. ACS Applied Materials & Interfaces, 2021, 13, 53301-53302.	4.0	5
46	Intramolecular Borylation via Sequential Bâ^'Mes Bond Cleavage for the Divergent Synthesis of B,N,Bâ€Ðoped Benzo[4]helicenes. Angewandte Chemie - International Edition, 2020, 59, 3156-3160.	7.2	90
47	Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy. Advanced Optical Materials, 2020, 8, 1901627.	3.6	182
48	A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. Journal of the American Chemical Society, 2020, 142, 18293-18298.	6.6	50
49	Design Rules to Maximize Charge-Carrier Mobility along Conjugated Polymer Chains. Journal of Physical Chemistry Letters, 2020, 11, 6519-6525.	2.1	28
50	Overlap-Driven Splitting of Triplet Pairs in Singlet Fission. Journal of the American Chemical Society, 2020, 142, 20040-20047.	6.6	26
51	Fate of Low-Lying Charge-Transfer Excited States in a Donor:Acceptor Blend with a Large Energy Offset. Journal of Physical Chemistry Letters, 2020, 11, 10219-10226.	2.1	9
52	Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature, 2020, 587, 594-599.	13.7	135
53	Triphenylamine/Tetracyanobutadieneâ€Based Ï€â€Conjugated Push–Pull Molecules Endâ€Capped with Arene Platforms: Synthesis, Photophysics, and Photovoltaic Response. Chemistry - A European Journal, 2020, 26, 16422-16433.	1.7	26
54	Ultrafast and Highly Sensitive Chemically Functionalized Graphene Oxide-Based Humidity Sensors: Harnessing Device Performances via the Supramolecular Approach. ACS Applied Materials & Interfaces, 2020, 12, 44017-44025.	4.0	28

#	Article	IF	CITATIONS
55	Molecular Quadrupole Moments Promote Ground‧tate Charge Generation in Doped Organic Semiconductors. Advanced Functional Materials, 2020, 30, 2004600.	7.8	15
56	Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nature Communications, 2020, 11, 4617.	5.8	60
57	First principles modeling of exciton-polaritons in polydiacetylene chains. Journal of Chemical Physics, 2020, 153, 084103.	1.2	14
58	Molecular Functionalization of Chemically Active Defects in WSe 2 for Enhanced Optoâ€Electronics. Advanced Functional Materials, 2020, 30, 2005045.	7.8	22
59	Binding Mode Multiplicity and Multiscale Chirality in the Supramolecular Assembly of DNA and a π onjugated Polymer. ChemPhysChem, 2020, 21, 2543-2552.	1.0	4
60	Enhanced Adhesion Energy at Oxide/Ag Interfaces for Low-Emissivity Glasses: Theoretical Insight into Doping and Vacancy Effects. ACS Applied Materials & Interfaces, 2020, 12, 40838-40849.	4.0	5
61	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
62	Carbene–Metal–Amide Polycrystalline Materials Feature Blue Shifted Energy yet Unchanged Kinetics of Emission. Chemistry of Materials, 2020, 32, 4743-4753.	3.2	25
63	Interlayer Bonding in Two-Dimensional Materials: The Special Case of SnP ₃ and GeP ₃ . Journal of Physical Chemistry Letters, 2020, 11, 4503-4510.	2.1	24
64	Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatomâ€Doped Nanographenes: Recent Advances and Prospects for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1908677.	7.8	385
65	Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 2000228.	7.8	12
66	Electronic and Transport Properties in Defective MoS ₂ : Impact of Sulfur Vacancies. Journal of Physical Chemistry C, 2020, 124, 15076-15084.	1.5	46
67	Uncovering dark multichromophoric states in Peridinin–Chlorophyll–Protein. Journal of the Royal Society Interface, 2020, 17, 20190736.	1.5	4
68	Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons. Nano Letters, 2020, 20, 2993-3002.	4.5	52
69	Organic Cations Protect Methylammonium Lead Iodide Perovskites against Small Exciton-Polaron Formation. Journal of Physical Chemistry Letters, 2020, 11, 2983-2991.	2.1	12
70	A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2020, 142, 6588-6599.	6.6	189
71	Collective Dipoleâ€Dominated Doping of Monolayer MoS ₂ : Orientation and Magnitude Control via the Supramolecular Approach. Advanced Functional Materials, 2020, 30, 2002846.	7.8	27
72	Exciton efficiency beyond the spin statistical limit in organic light emitting diodes based on anthracene derivatives. Journal of Materials Chemistry C, 2020, 8, 3773-3783.	2.7	27

#	Article	IF	CITATIONS
73	Electrostatic Interactions Shape Molecular Organization and Electronic Structure of Organic Semiconductor Blends. Chemistry of Materials, 2020, 32, 1261-1271.	3.2	24
74	In Depth Analysis of Photovoltaic Performance of Chlorophyll Derivative-Based "All Solid-State― Dye-Sensitized Solar Cells. Molecules, 2020, 25, 198.	1.7	10
75	On the absence of triplet exciton loss pathways in non-fullerene acceptor based organic solar cells. Materials Horizons, 2020, 7, 1641-1649.	6.4	24
76	Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nature Photonics, 2020, 14, 123-128.	15.6	93
77	Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow. Science Advances, 2019, 5, eaaw7757.	4.7	105
78	Lead-Halide Perovskites Meet Donor–Acceptor Charge-Transfer Complexes. Chemistry of Materials, 2019, 31, 6880-6888.	3.2	36
79	Resilience to Conformational Fluctuations Controls Energetic Disorder in Conjugated Polymer Materials: Insights from Atomistic Simulations. Chemistry of Materials, 2019, 31, 6889-6899.	3.2	30
80	Resonance Raman study of the J-type aggregation process of a water soluble perylene bisimide. Physical Chemistry Chemical Physics, 2019, 21, 18300-18309.	1.3	2
81	Stable 6H Organic–Inorganic Hybrid Lead Perovskite and Competitive Formation of 6H and 3C Perovskite Structure with Mixed A Cations. ACS Applied Energy Materials, 2019, 2, 5427-5437.	2.5	15
82	Host dependence of the electron affinity of molecular dopants. Materials Horizons, 2019, 6, 107-114.	6.4	64
83	Photon Upconversion from Near-Infrared to Blue Light with TIPS-Anthracene as an Efficient Triplet–Triplet Annihilator. , 2019, 1, 660-664.		68
84	Singlet exciton fission via an intermolecular charge transfer state in coevaporated pentacene-perfluoropentacene thin films. Journal of Chemical Physics, 2019, 151, 164706.	1.2	22
85	Tuning the Optical and Electrical Properties of Few‣ayer Black Phosphorus via Physisorption of Small Solvent Molecules. Small, 2019, 15, e1903432.	5.2	21
86	Functional panchromatic BODIPY dyes with near-infrared absorption: design, synthesis, characterization and use in dye-sensitized solar cells. Beilstein Journal of Organic Chemistry, 2019, 15, 1758-1768.	1.3	8
87	Positive effect of functional side groups on the structure and properties of benzoxazine networks and nanocomposites. Polymer Chemistry, 2019, 10, 5251-5264.	1.9	8
88	Repurposing DNA-binding agents as H-bonded organic semiconductors. Nature Communications, 2019, 10, 4217.	5.8	28
89	Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nature Communications, 2019, 10, 597.	5.8	253
90	Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets. Chemistry of Materials, 2019, 31, 6808-6817.	3.2	20

#	Article	IF	CITATIONS
91	Polaron spin dynamics in high-mobility polymeric semiconductors. Nature Physics, 2019, 15, 814-822.	6.5	40
92	Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nature Communications, 2019, 10, 2614.	5.8	60
93	Class Hardness Modification by Means of Ion Implantation: Electronic Doping versus Surface Composition Effect. Advanced Theory and Simulations, 2019, 2, 1900039.	1.3	4
94	Evidence for Strong and Weak Phenyl-C ₆₁ -Butyric Acid Methyl Ester Photodimer Populations in Organic Solar Cells. Chemistry of Materials, 2019, 31, 6076-6083.	3.2	11
95	Impact of structural anisotropy on electro-mechanical response in crystalline organic semiconductors. Journal of Materials Chemistry C, 2019, 7, 4382-4391.	2.7	10
96	Atomistic simulations of charge transport in photoswitchable organic-graphene hybrids. JPhys Materials, 2019, 2, 035001.	1.8	7
97	Graphene Meets Ionic Liquids: Fermi Level Engineering <i>via</i> Electrostatic Forces. ACS Nano, 2019, 13, 3512-3521.	7.3	22
98	Detection of the Enzymatic Cleavage of DNA through Supramolecular Chiral Induction to a Cationic Polythiophene. ACS Applied Bio Materials, 2019, 2, 2125-2136.	2.3	10
99	Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials. Advanced Materials, 2019, 31, e1804490.	11.1	31
100	Modelling Coupled Ion Motion in Electrolyte Solutions for Lithium‣ulfur Batteries. Batteries and Supercaps, 2019, 2, 473-481.	2.4	9
101	Comprehensive modelling study of singlet exciton diffusion in donor–acceptor dyads: when small changes in chemical structure matter. Physical Chemistry Chemical Physics, 2019, 21, 25023-25034.	1.3	14
102	Black Phosphorus: Tuning the Optical and Electrical Properties of Few‣ayer Black Phosphorus via Physisorption of Small Solvent Molecules (Small 47/2019). Small, 2019, 15, 1970252.	5.2	3
103	Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules. Journal of Physical Chemistry Letters, 2019, 10, 540-547.	2.1	52
104	Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nature Materials, 2019, 18, 349-356.	13.3	257
105	Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nature Communications, 2018, 9, 954.	5.8	76
106	Impact of Triplet Excited States on the Open ircuit Voltage of Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800451.	10.2	36
107	Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory. Physical Review B, 2018, 97, .	1.1	46
108	Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nature Communications, 2018, 9, 278.	5.8	90

#	Article	IF	CITATIONS
109	How Methylammonium Cations and Chlorine Dopants Heal Defects in Lead Iodide Perovskites. Advanced Energy Materials, 2018, 8, 1702754.	10.2	86
110	Simple donor-acceptor molecule with long exciton diffusion length for organic photovoltaics. Organic Electronics, 2018, 53, 185-190.	1.4	19
111	Carbene–Metal–Amide Bond Deformation, Rather Than Ligand Rotation, Drives Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 1620-1626.	2.1	57
112	Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead. Journal of Physical Chemistry Letters, 2018, 9, 6149-6163.	2.1	121
113	Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8211-8220.	3.2	35
114	Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 33360-33372.	4.0	67
115	20â€1: <i>Invited Paper:</i> Towards Deepâ€Blue Materials with Efficient Triplet Harvesting. Digest of Technical Papers SID International Symposium, 2018, 49, 239-242.	0.1	1
116	Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Scientific Reports, 2018, 8, 8115.	1.6	32
117	Vibrationally Assisted Intersystem Crossing in Benchmark Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry Letters, 2018, 9, 4053-4058.	2.1	69
118	Do Carbon Nanotubes Improve the Thermomechanical Properties of Benzoxazine Thermosets?. ACS Applied Materials & Interfaces, 2018, 10, 26669-26677.	4.0	14
119	Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics. Nature Communications, 2018, 9, 2661.	5.8	53
120	Tuning the Optoelectronic Properties of Two-Dimensional Hybrid Perovskite Semiconductors with Alkyl Chain Spacers. Journal of Physical Chemistry Letters, 2018, 9, 3416-3424.	2.1	77
121	Influence of Surface Termination on the Energy Level Alignment at the CH ₃ NH ₃ PbI ₃ Perovskite/C60 Interface. Chemistry of Materials, 2017, 29, 958-968.	3.2	149
122	Engineering Chemically Active Defects in Monolayer MoS ₂ Transistors via Ionâ€Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Advanced Materials, 2017, 29, 1606760.	11.1	165
123	Photochemistry of ruthenium(<scp>ii</scp>) complexes based on 1,4,5,8-tetraazaphenanthrene and 2,2′-bipyrazine: a comprehensive experimental and theoretical study. Dalton Transactions, 2017, 46, 6623-6633.	1.6	23
124	Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 7982-7988.	6.6	64
125	Which Oxide for Low-Emissivity Glasses? First-Principles Modeling of Silver Adhesion. ACS Applied Materials & Interfaces, 2017, 9, 18346-18354.	4.0	10
126	Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing. Chemistry of Materials, 2017, 29, 2777-2787.	3.2	56

#	Article	IF	CITATIONS
127	Ultrafast Non-Förster Intramolecular Donor–Acceptor Excitation Energy Transfer. Journal of Physical Chemistry Letters, 2017, 8, 1688-1694.	2.1	20
128	Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nature Communications, 2017, 8, 14767.	5.8	68
129	Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nature Chemistry, 2017, 9, 341-346.	6.6	155
130	Origin of DNA-Induced Circular Dichroism in a Minor-Groove Binder. Journal of the American Chemical Society, 2017, 139, 14947-14953.	6.6	38
131	Measurements of Ambipolar Seebeck Coefficients in Highâ€Mobility Diketopyrrolopyrrole Donor–Acceptor Copolymers. Advanced Electronic Materials, 2017, 3, 1700225.	2.6	26
132	Modeling the formation and thermomechanical properties of polybenzoxazine thermosets. Polymer Chemistry, 2017, 8, 5988-5999.	1.9	30
133	Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles. ACS Nano, 2017, 11, 7858-7868.	7.3	36
134	The entangled triplet pair state in acene and heteroacene materials. Nature Communications, 2017, 8, 15953.	5.8	171
135	Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites. Journal of the American Chemical Society, 2017, 139, 18632-18639.	6.6	111
136	Edge Functionalization of Structurally Defined Graphene Nanoribbons for Modulating the Self-Assembled Structures. Journal of the American Chemical Society, 2017, 139, 16454-16457.	6.6	43
137	Exfoliation of Fewâ€Layer Graphene in Volatile Solvents Using Aromatic Perylene Diimide Derivatives as Surfactants. ChemPlusChem, 2017, 82, 358-367.	1.3	18
138	Probing the interaction between 2,2′-bithiophene-5-carboxylic acid and TiO2 by photoelectron spectroscopy: A joint experimental and theoretical study. Journal of Chemical Physics, 2017, 147, 244704.	1.2	2
139	Doping LiMnPO4 with Cobalt and Nickel: A First Principle Study. Batteries, 2017, 3, 11.	2.1	23
140	Correlated electron-hole mechanism for molecular doping in organic semiconductors. Physical Review Materials, 2017, 1, .	0.9	42
141	Displacement of polarons by vibrational modes in doped conjugated polymers. Physical Review Materials, 2017, 1, .	0.9	27
142	Nature of the singlet and triplet excitations mediating thermally activated delayed fluorescence. Physical Review Materials, 2017, 1, .	0.9	102
143	Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2â€∢i>b][1]benzothiophene. Advanced Materials, 2016, 28, 7106-7114.	11.1	138
144	Elucidating Batch-to-Batch Variation Caused by Homocoupled Side Products in Solution-Processable Organic Solar Cells. Chemistry of Materials, 2016, 28, 9088-9098.	3.2	25

#	Article	IF	CITATIONS
145	Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics. Journal of Physics Condensed Matter, 2016, 28, 433002.	0.7	131
146	Photophysical Properties of Molecular Aggregates "101― Materials and Energy, 2016, , 93-130.	2.5	6
147	Tuning the nature and stability of self-assemblies formed by ester benzene 1,3,5-tricarboxamides: the crucial role played by the substituents. Soft Matter, 2016, 12, 7824-7838.	1.2	45
148	Charge Carrier Mobility: Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene (Adv.) Tj ETQq0 0	0 r gB T /Ov	verlock 10 Tf
149	Electronic Structure and Charge Transport in Nanostripped Graphene. Journal of Physical Chemistry C, 2016, 120, 20024-20032.	1.5	10
150	Combining the Many-Body <i>GW</i> Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids. Journal of Physical Chemistry Letters, 2016, 7, 2814-2820.	2.1	70
151	Resonant Energy Transport in Dye-Filled Monolithic Crystals of Zeolite L: Modeling of Inhomogeneity. Journal of Physical Chemistry C, 2016, 120, 27192-27199.	1.5	12
152	Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites. Nature Communications, 2016, 7, 11090.	5.8	97
153	Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design. Journal of Materials Chemistry C, 2016, 4, 10893-10902.	2.7	3
154	Optical properties of regioregular poly(3-hexylthiophene) aggregates from fully atomistic investigations. CrystEngComm, 2016, 18, 7297-7304.	1.3	8
155	Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes. Journal of Physical Chemistry Letters, 2016, 7, 2714-2721.	2.1	73
156	Fused Dibenzo[<i>a</i> , <i>m</i>]rubicene: A New Bowl-Shaped Subunit of C ₇₀ Containing Two Pentagons. Journal of the American Chemical Society, 2016, 138, 8364-8367.	6.6	66
157	Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO. Surface Science, 2016, 645, 67-73.	0.8	35
158	A Blue-Light-Emitting BODIPY Probe for Lipid Membranes. Langmuir, 2016, 32, 3495-3505.	1.6	34
159	Unexpected Scholl Reaction of 6,7,13,14-Tetraarylbenzo[<i>k</i>]tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2016, 138, 2602-2608.	6.6	103
160	Charge Separation and Recombination at Polymer–Fullerene Heterojunctions: Delocalization and Hybridization Effects. Journal of Physical Chemistry Letters, 2016, 7, 536-540.	2.1	93
161	Combined Molecular Dynamics and Density Functional Theory Study of Azobenzene–Graphene Interfaces. Journal of Physical Chemistry C, 2016, 120, 6651-6658.	1.5	16
162	Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials. Nanoscale, 2016, 8, 2386-2394.	2.8	8

#	Article	IF	CITATIONS
163	Do charges delocalize over multiple molecules in fullerene derivatives?. Journal of Materials Chemistry C, 2016, 4, 3747-3756.	2.7	44
164	First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Ï€</mml:mi></mml:math> Stacking. Physical Review Letters, 2015, 115, 107401.	2.9	137
165	Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations. Journal of Chemical Physics, 2015, 143, 114116.	1.2	36
166	Bottomâ€Up Synthesis of Necklace‣ike Graphene Nanoribbons. Chemistry - an Asian Journal, 2015, 10, 2134-2138.	1.7	43
167	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 948-956.	3.6	39
168	Mixed quantum-classical dynamics for charge transport in organics. Physical Chemistry Chemical Physics, 2015, 17, 12395-12406.	1.3	85
169	Low-Temperature Photoluminescence Spectroscopy of Solvent-Free PCBM Single-Crystals. Journal of Physical Chemistry C, 2015, 119, 11846-11851.	1.5	20
170	Does Excess Energy Assist Photogeneration in an Organic Lowâ€Bandgap Solar Cell?. Advanced Functional Materials, 2015, 25, 1287-1295.	7.8	31
171	First Principles Calculations of Charge Transfer Excitations in Polymer–Fullerene Complexes: Influence of Excess Energy. Advanced Functional Materials, 2015, 25, 1972-1984.	7.8	59
172	Self-assembly and hybridization mechanisms of DNA with cationic polythiophene. Soft Matter, 2015, 11, 6460-6471.	1.2	24
173	Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 6097-6103.	6.6	299
174	Toward Fast and Accurate Evaluation of Charge On-Site Energies and Transfer Integrals in Supramolecular Architectures Using Linear Constrained Density Functional Theory (CDFT)-Based Methods. Journal of Chemical Theory and Computation, 2015, 11, 2077-2086.	2.3	38
175	Energy Level Alignment at Titanium Oxide–Dye Interfaces: Implications for Electron Injection and Light Harvesting. Journal of Physical Chemistry C, 2015, 119, 9899-9909.	1.5	28
176	Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence. Chemical Science, 2015, 6, 3248-3261.	3.7	39
177	Photoaddition of Two Guanine Bases to Single Ru-TAP Complexes. Computational Studies and Ultrafast Spectroscopies to Elucidate the pH Dependence of Primary Processes. Journal of Physical Chemistry B, 2015, 119, 4488-4500.	1.2	15
178	Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate. ACS Applied Materials & Interfaces, 2015, 7, 19134-19144.	4.0	34
179	Ï€-extended [12]cycloparaphenylenes: from a hexaphenylbenzene cyclohexamer to its unexpected C2-symmetric congener. Chemical Science, 2015, 6, 7072-7078.	3.7	32
180	Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and Hydrogen Bonds. Journal of the American Chemical Society, 2015, 137, 15795-15808.	6.6	51

#	Article	IF	CITATIONS
181	Ultrafast Charge Generation Pathways in Photovoltaic Blends Based on Novel Star‧haped Conjugated Molecules. Advanced Energy Materials, 2015, 5, 1401657.	10.2	35
182	Charge separation energetics at organic heterojunctions: on the role of structural and electrostatic disorder. Physical Chemistry Chemical Physics, 2014, 16, 20279-20290.	1.3	67
183	A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis. Nature Communications, 2014, 5, 5793.	5.8	132
184	Electronic Polarization in Organic Crystals: A Comparative Study of Induced Dipoles and Intramolecular Charge Redistribution Schemes. Journal of Chemical Theory and Computation, 2014, 10, 4959-4971.	2.3	76
185	On the Relation between Morphology and FET Mobility of Poly(3â€alkylthiophene)s at the Polymer/SiO ₂ and Polymer/Air Interface. Advanced Functional Materials, 2014, 24, 1994-2004.	7.8	17
186	25th Anniversary Article: Highâ€Mobility Hole and Electron Transport Conjugated Polymers: How Structure Defines Function. Advanced Materials, 2014, 26, 2119-2136.	11.1	199
187	Polymorphism in Bulk and Thin Films: The Curious Case of Dithiophene-DPP(Boc)-Dithiophene. Journal of Physical Chemistry C, 2014, 118, 657-669.	1.5	26
188	Charge Dissociation at Interfaces between Discotic Liquid Crystals: The Surprising Role of Column Mismatch. Journal of the American Chemical Society, 2014, 136, 2911-2920.	6.6	55
189	Hierarchical Selfâ€Assembly of Supramolecular Helical Fibres from Amphiphilic <i>C</i> ₃ ‣ymmetrical Functional Tris(tetrathiafulvalenes). Chemistry - A European Journal, 2014, 20, 17443-17453.	1.7	35
190	Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515, 384-388.	13.7	844
191	Maximizing Singlet Fission by Intermolecular Packing. Journal of Physical Chemistry Letters, 2014, 5, 3345-3353.	2.1	135
192	Work function shifts of a zinc oxide surface upon deposition of self-assembled monolayers: a theoretical insight. Physical Chemistry Chemical Physics, 2014, 16, 20887-20899.	1.3	33
193	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	1.5	50
194	Functional Layers for Zn ^{II} Ion Detection: From Molecular Design to Optical Fiber Sensors. Journal of Physical Chemistry B, 2014, 118, 309-314.	1.2	9
195	Coherent Electron Transmission across Nanographenes Tethered to Gold Electrodes: Influence of Linker Topology, Ribbon Width, and Length. Journal of Physical Chemistry C, 2014, 118, 7643-7652.	1.5	4
196	Efficient Approach to Electron-Deficient 1,2,7,8-Tetraazaperylene Derivatives. Organic Letters, 2014, 16, 4726-4729.	2.4	22
197	Synthesis of Nitrogenâ€Doped ZigZagâ€Edge Peripheries: Dibenzoâ€9 <i>a</i> à€azaphenalene as Repeating Unit. Angewandte Chemie - International Edition, 2014, 53, 10520-10524.	7.2	92
198	Synthesis and Photophysics of Coaxial Threaded Molecular Wires: Polyrotaxanes with Triarylamine Jackets. Journal of Physical Chemistry C, 2014, 118, 4553-4566.	1.5	21

#	Article	IF	CITATIONS
199	8-HaloBODIPYs and Their 8-(C, N, O, S) Substituted Analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2014, 118, 1576-1594.	1.1	62
200	Designing coved graphene nanoribbons with charge carrier mobility approaching that of graphene. Carbon, 2014, 77, 868-879.	5.4	20
201	Probing the Relation Between Charge Transport and Supramolecular Organization Down to Ångström Resolution in a Benzothiadiazole yclopentadithiophene Copolymer. Advanced Materials, 2013, 25, 1939-1947.	11.1	84
202	Interfacial dipole and band bending in model pentacene/C ₆₀ heterojunctions. International Journal of Quantum Chemistry, 2013, 113, 580-584.	1.0	33
203	Molecular Weight Dependence of Exciton Diffusion in Poly(3â€hexylthiophene). Advanced Energy Materials, 2013, 3, 1445-1453.	10.2	36
204	On the Supramolecular Packing of High Electron Mobility Naphthalene Diimide Copolymers: The Perfect Registry of Asymmetric Branched Alkyl Side Chains. Macromolecules, 2013, 46, 8171-8178.	2.2	44
205	Singlet exciton fission in solution. Nature Chemistry, 2013, 5, 1019-1024.	6.6	450
206	Stiffness versus architecture of single helical polyisocyanopeptides. Chemical Science, 2013, 4, 2357.	3.7	28
207	UV—vis spectroscopy of the coupling products of the palladium-catalyzed C—H arylation of the BODIPY core. Photochemical and Photobiological Sciences, 2013, 12, 835-847.	1.6	37
208	Exploring the Energy Landscape of the Charge Transport Levels in Organic Semiconductors at the Molecular Scale. Accounts of Chemical Research, 2013, 46, 434-443.	7.6	64
209	Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale, 2013, 5, 4205.	2.8	116
210	An Experimental and Theoretical Approach to the Photophysical Properties of Some Rh and Ir Complexes Incorporating the Dipyrromethene Ligand. European Journal of Inorganic Chemistry, 2013, 2013, 2031-2040.	1.0	17
211	Control of Intrachain Charge Transfer in Model Systems for Block Copolymer Photovoltaic Materials. Journal of the American Chemical Society, 2013, 135, 5074-5083.	6.6	57
212	Synthesis and Optical Properties of Pyrrolo[3,2- <i>b</i>]pyrrole-2,5(1 <i>H</i> ,4 <i>H</i>)-dione (iDPP)-Based Molecules. Journal of Physical Chemistry A, 2013, 117, 2782-2789.	1.1	26
213	Polymorphism, Fluorescence, and Optoelectronic Properties of a Borazine Derivative. Chemistry - A European Journal, 2013, 19, 7771-7779.	1.7	49
214	To Hop or Not to Hop? Understanding the Temperature Dependence of Spectral Diffusion in Organic Semiconductors. Journal of Physical Chemistry Letters, 2013, 4, 1694-1700.	2.1	41
215	Energy Level Alignment and Charge Carrier Mobility in Noncovalently Functionalized Graphene. Journal of Physical Chemistry Letters, 2013, 4, 2158-2165.	2.1	83
216	Flexible Surface Hopping Approach to Model the Crossover from Hopping to Band-like Transport in Organic Crystals. Journal of Physical Chemistry Letters, 2013, 4, 1888-1894.	2.1	149

#	Article	IF	CITATIONS
217	Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye. Organic Electronics, 2013, 14, 1787-1792.	1.4	17
218	Charge-Transfer Excitations Steer the Davydov Splitting and Mediate Singlet Exciton Fission in Pentacene. Physical Review Letters, 2013, 110, 226402.	2.9	253
219	Surface-Induced Diastereomeric Complex Formation of a Nucleoside at the Liquid/Solid Interface: Stereoselective Recognition and Preferential Adsorption. Journal of the American Chemical Society, 2013, 135, 9811-9819.	6.6	24
220	Energetics of Electron–Hole Separation at P3HT/PCBM Heterojunctions. Journal of Physical Chemistry C, 2013, 117, 12981-12990.	1.5	126
221	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	5.8	187
222	Selfâ€Assembled Organic Microfibers for Nonlinear Optics. Advanced Materials, 2013, 25, 2084-2089.	11.1	119
223	Beta Sheets with a Twist: The Conformation of Helical Polyisocyanopeptides Determined by Using Vibrational Circular Dichroism. Chemistry - A European Journal, 2013, 19, 13168-13174.	1.7	15
224	Methodological aspects of the quantum-chemical description of interface dipoles at tetrathiafulvalene/tetracyanoquinodimethane interfaces. Journal of Chemical Physics, 2012, 137, 174708.	1.2	7
225	How do Triplets and Charges Move in Disordered Organic Semiconductors? A Monte Carlo Study Comprising the Equilibrium and Nonequilibrium Regime. Journal of Physical Chemistry C, 2012, 116, 16371-16383.	1.5	45
226	Pasteurian Segregation on a Surface Imaged In Situ at the Molecular Level. Angewandte Chemie - International Edition, 2012, 51, 11981-11985.	7.2	26
227	Structural and Electronic Properties of the TTF/ZnO(10–10) Interface: Insights From Modeling. Journal of Physical Chemistry Letters, 2012, 3, 58-63.	2.1	12
228	Optical Properties of Oligothiophene Substituted Diketopyrrolopyrrole Derivatives in the Solid Phase: Joint J- and H-Type Aggregation. Journal of Physical Chemistry A, 2012, 116, 7927-7936.	1.1	114
229	Tuning the Interfacial Electronic Structure at Organic Heterojunctions by Chemical Design. Journal of Physical Chemistry Letters, 2012, 3, 2374-2378.	2.1	40
230	Effects of Polymer Packing Structure on Photoinduced Triplet Generation and Dynamics. Journal of Physical Chemistry C, 2012, 116, 11298-11305.	1.5	7
231	Visible Absorption and Fluorescence Spectroscopy of Conformationally Constrained, Annulated BODIPY Dyes. Journal of Physical Chemistry A, 2012, 116, 9621-9631.	1.1	51
232	The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science, 2012, 335, 1340-1344.	6.0	1,022
233	Asymmetric Noncovalent Synthesis of Self-Assembled One-Dimensional Stacks by a Chiral Supramolecular Auxiliary Approach. Journal of the American Chemical Society, 2012, 134, 17789-17796.	6.6	114
234	Molecular modeling study of the structure and stability of polymer/carbon nanotube interfaces. Polymer, 2012, 53, 5480-5490.	1.8	49

#	Article	IF	CITATIONS
235	Effects of the Environment on Charge Transport in Molecular Wires. Journal of Physical Chemistry C, 2012, 116, 25213-25225.	1.5	17
236	Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	15
237	On the formation mechanism for electrically generated exciplexes in a carbazole–pyridine copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 361-369.	2.4	9
238	The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction. Advanced Functional Materials, 2012, 22, 2987-2995.	7.8	298
239	On the mechanism of dynamic polymerization via recycled ss-DNA templated assembly of non-natural bases. Chemical Science, 2012, 3, 2732.	3.7	21
240	Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano, 2012, 6, 5539-5548.	7.3	99
241	Organization of the enantiomeric and racemic forms of an amphiphilic resorcinol derivative at the air–water and graphite–1â€phenyloctane interfaces. Chirality, 2012, 24, 155-166.	1.3	11
242	Unraveling the Mechanism of Molecular Doping in Organic Semiconductors. Advanced Materials, 2012, 24, 1535-1539.	11.1	114
243	The nature of singlet excitons in oligoacene molecular crystals. Journal of Chemical Physics, 2011, 134, 204703.	1.2	233
244	Ab Initio Modeling of Donor–Acceptor Interactions and Charge-Transfer Excitations in Molecular Complexes: The Case of Terthiophene–Tetracyanoquinodimethane. Journal of Chemical Theory and Computation, 2011, 7, 2068-2077.	2.3	46
245	Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic <i>C</i> ₃ -Symmetrical Ĩ€-Functional Molecule. Journal of the American Chemical Society, 2011, 133, 8344-8353.	6.6	154
246	Supramolecular Organization and Charge Transport Properties of Self-Assembled ï€â~'ï€ Stacks of Perylene Diimide Dyes. Journal of Physical Chemistry B, 2011, 115, 5593-5603.	1.2	54
247	Mixed quantum-classical simulations of charge transport in organic materials: Numerical benchmark of the Su-Schrieffer-Heeger model. Journal of Chemical Physics, 2011, 134, 244116.	1.2	49
248	Charge Separation in Semicrystalline Polymeric Semiconductors by Photoexcitation: Is the Mechanism Intrinsic or Extrinsic?. Physical Review Letters, 2011, 106, 197401.	2.9	118
249	Electronic Processes at Organicâ^'Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices. Chemistry of Materials, 2011, 23, 591-609.	3.2	185
250	Does supramolecular ordering influence exciton transport in conjugated systems? Insight from atomistic simulations. Chemical Science, 2011, 2, 1025.	3.7	28
251	Fingerprints for Structural Defects in Poly(thienylene vinylene) (PTV): A Joint Theoretical–Experimental NMR Study on Model Molecules. Journal of Physical Chemistry B, 2011, 115, 12040-12050.	1.2	8
252	Belt-Shaped π-Systems: Relating Geometry to Electronic Structure in a Six-Porphyrin Nanoring. Journal of the American Chemical Society, 2011, 133, 17262-17273.	6.6	201

#	Article	IF	CITATIONS
253	Tuning interchain and intrachain interactions in polyfluorene copolymers. Physical Review B, 2011, 84,	1.1	33
254	Nucleoside-Assisted Self-Assembly of Oligo(<i>p</i> -phenylenevinylene)s at Liquid/Solid Interface: Chirality and Nanostructures. Journal of the American Chemical Society, 2011, 133, 17764-17771.	6.6	48
255	Selfâ€Assembled Conjugated Thiopheneâ€Based Rotaxane Architectures: Structural, Computational, and Spectroscopic Insights into Molecular Aggregation. Advanced Functional Materials, 2011, 21, 834-844.	7.8	24
256	Oligo(<i>p</i> â€phenylene ethynylene)–BODIPY Derivatives: Synthesis, Energy Transfer, and Quantumâ€Chemical Calculations. Chemistry - A European Journal, 2011, 17, 13247-13257.	1.7	40
257	Tuning the electronic coupling in a low-bandgap donor–acceptor copolymer via the placement of side-chains. Journal of Chemical Physics, 2011, 134, 114901.	1.2	34
258	Macromolecular Scaffolding: The Relationship Between Nanoscale Architecture and Function in Multichromophoric Arrays for Organic Electronics. Advanced Materials, 2010, 22, E81-8.	11.1	39
259	A Conjugated Thiopheneâ€Based Rotaxane: Synthesis, Spectroscopy, and Modeling. Chemistry - A European Journal, 2010, 16, 3933-3941.	1.7	29
260	2D Excitons as Primary Energy Carriers in Organic Crystals: The Case of Oligoacenes. Physical Review Letters, 2010, 104, 206405.	2.9	20
261	Superexchange-mediated electronic energy transfer in a model dyad. Physical Chemistry Chemical Physics, 2010, 12, 7378.	1.3	32
262	On the Interface Dipole at the Pentaceneâ^'Fullerene Heterojunction: A Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 3215-3224.	1.5	122
263	First Hyperpolarizability Dispersion of the Octupolar Molecule Crystal Violet: Multiple Resonances and Vibrational and Solvation Effects. Journal of the American Chemical Society, 2010, 132, 16467-16478.	6.6	64
264	Optical Properties of Light-Emitting Nematic Liquid Crystals: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry B, 2010, 114, 11975-11982.	1.2	13
265	Influence of Structural Dynamics on Polarization Energies in Anthracene Single Crystals. Journal of Physical Chemistry C, 2010, 114, 20678-20685.	1.5	86
266	Shared-mode assisted resonant energy transfer in the weak coupling regime. Journal of Chemical Physics, 2009, 130, 214505.	1.2	53
267	Modeling Polymer Dielectric/Pentacene Interfaces: On the Role of Electrostatic Energy Disorder on Charge Carrier Mobility. Advanced Functional Materials, 2009, 19, 3254-3261.	7.8	81
268	Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C ₆₀ Heterojunctions. Advanced Functional Materials, 2009, 19, 3809-3814.	7.8	208
269	"Helter‣kelterâ€Like―Perylene Polyisocyanopeptides. Chemistry - A European Journal, 2009, 15, 2536-254	71.7	64
270	Influence of Intermolecular Vibrations on the Electronic Coupling in Organic Semiconductors: The Case of Anthracene and Perfluoropentacene, ChemPhysChem, 2009, 10, 2265-2273	1.0	77

#	Article	IF	CITATIONS
271	Energy Transport along Conjugated Polymer Chains with Extended Radiative Lifetimes: A Theoretical Study. ChemPhysChem, 2009, 10, 3061-3068.	1.0	7
272	Inside Cover: Influence of Intermolecular Vibrations on the Electronic Coupling in Organic Semiconductors: The Case of Anthracene and Perfluoropentacene (ChemPhysChem 13/2009). ChemPhysChem, 2009, 10, 2158-2158.	1.0	0
273	Investigation of probe molecule–polymer interactions. Chemical Physics Letters, 2009, 472, 48-54.	1.2	5
274	Exciton diffusion in energetically disordered organic materials. Physical Review B, 2009, 80, .	1.1	99
275	Conformational Effects on Excitation Transport along Conjugated Polymer Chains. Journal of Physical Chemistry A, 2009, 113, 2677-2682.	1.1	38
276	3,5-Dianilino Substituted Difluoroboron Dipyrromethene: Synthesis, Spectroscopy, Photophysics, Crystal Structure, Electrochemistry, and Quantum-Chemical Calculations. Journal of Physical Chemistry C, 2009, 113, 11731-11740.	1.5	61
277	Atomic scale modeling of interfacial structure of PEDOT/PSS. Synthetic Metals, 2009, 159, 546-549.	2.1	22
278	Synthesis, Spectroscopy, Crystal Structure, Electrochemistry, and Quantum Chemical and Molecular Dynamics Calculations of a 3-Anilino Difluoroboron Dipyrromethene Dye. Journal of Physical Chemistry A, 2009, 113, 439-447.	1.1	98
279	Beyond Förster Resonance Energy Transfer in Biological and Nanoscale Systems. Journal of Physical Chemistry B, 2009, 113, 6583-6599.	1.2	404
280	Spatial Control of 3D Energy Transfer in Supramolecular Nanostructured Hostâ [~] Guest Architectures. Journal of Physical Chemistry B, 2009, 113, 10566-10570.	1.2	21
281	Modeling the Dynamics of Chromophores in Conjugated Polymers: The Case of Poly(2-methoxy-5-(2′-ethylhexyl)oxy 1,4-phenylene vinylene) (MEH-PPV). Journal of Physical Chemistry B, 2009, 113, 1311-1322.	1.2	59
282	Oxidizing Ru(II) Complexes as Irreversible and Specific Photo-Cross-Linking Agents of Oligonucleotide Duplexes. Inorganic Chemistry, 2009, 48, 10988-10994.	1.9	29
283	Conformational Disorder and Ultrafast Exciton Relaxation in PPV-family Conjugated Polymers. Journal of Physical Chemistry B, 2009, 113, 656-667.	1.2	143
284	Expression of chirality in molecular layers at surfaces: insights from modelling. Chemical Society Reviews, 2009, 38, 806.	18.7	45
285	Dynamics of guest molecules in PHTP inclusion compounds as probed by solid-state NMR and fluorescence spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 4996.	1.3	17
286	Modeling of the solid-state packing of charged chains (PEDOT) in the presence of the counterions (TSA) and the solvent (DEG). Theoretical Chemistry Accounts, 2008, 119, 305-312.	0.5	24
287	Energy Transport along Conjugated Polymer Chains: Throughâ€Space or Throughâ€Bond?. Advanced Functional Materials, 2008, 18, 492-498.	7.8	33
288	Oligophenylenevinylenes in Spatially Confined Nanochannels: Monitoring Intermolecular Interactions by UV/Vis and Raman Spectroscopy. Advanced Functional Materials, 2008, 18, 915-921.	7.8	20

#	Article	IF	CITATIONS
289	Electronic Transport Properties of Ensembles of Peryleneâ€Substituted Polyâ€isocyanopeptide Arrays. Advanced Functional Materials, 2008, 18, 3947-3955.	7.8	70
290	CHâ€i€ Interactions as the Driving Force for Siliconeâ€Based Nanocomposites with Exceptional Properties. Advanced Materials, 2008, 20, 1003-1007.	11.1	131
291	Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nature Materials, 2008, 7, 483-489.	13.3	180
292	On the Singletâ^'Triplet Splitting of Geminate Electronâ^'Hole Pairs in Organic Semiconductors. Journal of the American Chemical Society, 2008, 130, 3420-3427.	6.6	100
293	Optoelectronic and Charge Transport Properties at Organicâ ^{~,} Organic Semiconductor Interfaces: Comparison between Polyfluorene-Based Polymer Blend and Copolymer. Journal of the American Chemical Society, 2008, 130, 13120-13131.	6.6	84
294	Does Förster Theory Predict the Rate of Electronic Energy Transfer for a Model Dyad at Low Temperature?. Journal of Physical Chemistry B, 2008, 112, 3759-3766.	1.2	65
295	Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality: Synthesis, Solvatochromism, and Metal Ion Complex Formation. Journal of Physical Chemistry A, 2008, 112, 6104-6114.	1.1	100
296	Two-Dimensional Self-Assemblies of Thiopheneâ^'Fluorenone Conjugated Oligomers on Graphite:  A Joint STM and Molecular Modeling Study. Journal of Physical Chemistry C, 2008, 112, 6850-6859.	1.5	38
297	Photophysical study of bay substituted perylenediimides. Photochemical and Photobiological Sciences, 2008, 7, 1509-1521.	1.6	93
298	Ground- and Excited-State Pinched Cone Equilibria in Calix[4]arenes Bearing Two Perylene Bisimide Dyes. Journal of Physical Chemistry C, 2008, 112, 14626-14638.	1.5	77
299	"Reduced" Distributed Monopole Model for the Efficient Prediction of Energy Transfer in Condensed Phases. Journal of Physical Chemistry B, 2008, 112, 1752-1760.	1.2	10
300	Chiral Expression at the Solidâ^'Liquid Interface: A Joint Experimental and Theoretical Study of the Self-Assembly of Chiral Porphyrins on Graphite. Langmuir, 2008, 24, 9566-9574.	1.6	42
301	Trap Limited Exciton Transport in Conjugated Polymers. Journal of Physical Chemistry C, 2008, 112, 11532-11538.	1.5	69
302	Effect of fluorination on the electronic structure and optical excitations of π-conjugated molecules. Journal of Chemical Physics, 2007, 126, 111101.	1.2	84
303	Fluorescence lifetime fluctuations of single molecules probe the local environment of oligomers around the glass transition temperature. Journal of Chemical Physics, 2007, 126, 184902.	1.2	11
304	Non-conjugated, phenyl assisted coupling in through bond electron transfer in a perylenemonoimide–triphenylamine system. Photochemical and Photobiological Sciences, 2007, 6, 406-415.	1.6	7
305	Intersystem Crossing Processes in Nonplanar Aromatic Heterocyclic Molecules. Journal of Physical Chemistry A, 2007, 111, 10490-10499.	1.1	261
306	Control of luminescence in conjugated polymers through control of chain microstructure. Journal of Materials Chemistry, 2007, 17, 907-912.	6.7	13

#	Article	IF	CITATIONS
307	Probing Excitation Delocalization in Supramolecular Chiral Stacks by Means of Circularly Polarized Light:  Experiment and Modeling. Journal of the American Chemical Society, 2007, 129, 7044-7054.	6.6	112
308	Boron Dipyrromethene Analogs with Phenyl, Styryl, and Ethynylphenyl Substituents:  Synthesis, Photophysics, Electrochemistry, and Quantum-Chemical Calculations. Journal of Physical Chemistry A, 2007, 111, 8588-8597.	1.1	126
309	Three-Dimensional Energy Transport in Highly Luminescent Hostâ^'Guest Crystals:Â A Quantitative Experimental and Theoretical Study. Journal of the American Chemical Society, 2007, 129, 8585-8593.	6.6	62
310	CTâ^'CT Annihilation in Rigid Perylene End-Capped Pentaphenylenes. Journal of the American Chemical Society, 2007, 129, 610-619.	6.6	36
311	Visualization of Membrane Rafts Using a Perylene Monoimide Derivative and Fluorescence Lifetime Imaging. Biophysical Journal, 2007, 93, 2877-2891.	0.2	49
312	Monte Carlo Simulation of Exciton Bimolecular Annihilation Dynamics in Supramolecular Semiconductor Architectures. Journal of Physical Chemistry C, 2007, 111, 19111-19119.	1.5	17
313	Impact of Bridging Units on the Dynamics of Photoinduced Charge Generation and Charge Recombination in Donor–Acceptor Dyads. ChemPhysChem, 2007, 8, 1240-1249.	1.0	40
314	Singlet–Singlet Annihilation Leading to a Charge-Transfer Intermediate in Chromophore-End-Capped Pentaphenylenes. ChemPhysChem, 2007, 8, 1386-1393.	1.0	8
315	Influence of Intermolecular Orientation on the Photoinduced Charge Transfer Kinetics in Self-Assembled Aggregates of Donorâ^'Acceptor Arrays. Journal of the American Chemical Society, 2006, 128, 649-657.	6.6	171
316	Solvent and pH Dependent Fluorescent Properties of a Dimethylaminostyryl Borondipyrromethene Dye in Solution. Journal of Physical Chemistry A, 2006, 110, 5998-6009.	1.1	222
317	Pathways for Photoinduced Charge Separation and Recombination at Donorâ^'Acceptor Heterojunctions:Â The Case of Oligophenylenevinyleneâ^'Perylene Bisimide Complexes. Journal of Physical Chemistry A, 2006, 110, 3447-3453.	1.1	36
318	Molecular Origin of the Temperature-Dependent Energy Migration in a Rigid-Rod Ladder-Phenylene Molecular Host. Advanced Materials, 2006, 18, 310-314.	11.1	23
319	Pathways for Resonant Energy Transfer in Oligo(phenylenevinylene)–Fullerene Dyads: An Atomistic Model. Advanced Materials, 2006, 18, 1301-1306.	11.1	25
320	Influence of Copolymer Interface Orientation on the Optical Emission of Polymeric Semiconductor Heterojunctions. Physical Review Letters, 2006, 96, 117403.	2.9	64
321	A Microscopic Model for the Fluctuations of Local Field and Spontaneous Emission of Single Molecules in Disordered Media. ChemPhysChem, 2005, 6, 81-91.	1.0	58
322	Limitations of the Förster Description of Singlet Exciton Migration: The Illustrative Example of Energy Transfer to Ketonic Defects in Ladder-type Poly(para-phenylenes). Advanced Functional Materials, 2005, 15, 155-160.	7.8	63
323	Suppression of Green Emission in a New Class of Blue-Emitting Polyfluorene Copolymers with Twisted Biphenyl Moieties. Advanced Functional Materials, 2005, 15, 981-988.	7.8	108
324	Enhanced triplet exciton generation in polyfluorene blends. Physical Review B, 2005, 71, .	1.1	96

#	Article	IF	CITATIONS
325	Single Molecule Spectroscopy as a Probe for Dyeâ^'Polymer Interactions. Journal of the American Chemical Society, 2005, 127, 12011-12020.	6.6	34
326	Phosphorescence and Triplet State Energies of Oligothiophenes. Journal of Physical Chemistry B, 2005, 109, 4410-4415.	1.2	67
327	Theoretical Analyses of the Effects on the Linear and Quadratic Nonlinear Optical Properties ofN-Arylation of Pyridinium Groups in Stilbazolium Dyes. Journal of Physical Chemistry A, 2005, 109, 10052-10057.	1.1	34
328	Excitation Migration along Oligophenylenevinylene-Based Chiral Stacks:Â Delocalization Effects on Transport Dynamics. Journal of Physical Chemistry B, 2005, 109, 10594-10604.	1.2	80
329	Exciton Migration in Rigid-Rod Conjugated Polymers: An Improved Förster Model. Journal of the American Chemical Society, 2005, 127, 4744-4762.	6.6	257
330	Photoinduced Charge Generation and Recombination Dynamics in Model Donor/Acceptor Pairs for Organic Solar Cell Applications:  A Full Quantum-Chemical Treatment. Journal of the American Chemical Society, 2005, 127, 6077-6086.	6.6	314
331	Design of π-Conjugated Organic Materials for One-Dimensional Energy Transport in Nanochannels. Journal of Physical Chemistry B, 2005, 109, 4872-4880.	1.2	40
332	Charge-recombination processes in oligomer- and polymer-based light-emitting diodes: A molecular picture. Journal of the Society for Information Display, 2005, 13, 419.	0.8	3
333	Impact of the Computational Method on the Geometric and Electronic Properties of Oligo(phenylene) Tj ETQq1 :	I 0,78431 1.2	4 rgBT /Overl
334	A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light. Organic Letters, 2005, 7, 4377-4380.	2.4	297
335	Solid-state optical properties of linear polyconjugated molecules: π-stack contra herringbone. Journal of Chemical Physics, 2005, 123, 144914.	1.2	187
336	Liquid Crystalline Metal-Free Phthalocyanines Designed for Charge and Exciton Transport. Journal of Physical Chemistry B, 2005, 109, 20315-20323.	1.2	101
337	Optical properties of singly charged conjugated oligomers: A coupled-cluster equation of motion study. Journal of Chemical Physics, 2004, 121, 5567-5578.	1.2	21
338	Three-photon absorption in anthracene-porphyrin-anthracene triads: A quantum-chemical study. Journal of Chemical Physics, 2004, 121, 11060.	1.2	15
339	The Singlet–Triplet Exchange Energy in Conjugated Polymers. Advanced Functional Materials, 2004, 14, 11-18.	7.8	229
340	Chain-Length Dependence of Singlet and Triplet Exciton Formation Rates in Organic Light-Emitting Diodes. Advanced Functional Materials, 2004, 14, 684-692.	7.8	92
341	Theoretical Characterization and Design of End-Substituted Distyrylbenzenes as Excitation Shuttles in One-Dimensional Channels. Advanced Materials, 2004, 16, 1193-1197.	11.1	22
342	Quantum-Chemical Design of Host Materials for Full-Color Triplet Emission. Advanced Materials, 2004, 16, 1624-1629.	11.1	96

#	Article	IF	CITATIONS
343	Two-Photon Absorption in Quadrupolarï€-Conjugated Molecules: Influence of the Nature of the Conjugated Bridge and the Donor–Acceptor Separation. Chemistry - A European Journal, 2004, 10, 2668-2680.	1.7	72
344	The effects of sulfon on the structural and optical properties in the low-bandgap conjugated polymer poly (3,4-ethylenedioxythiophene). Computational and Theoretical Chemistry, 2004, 709, 195-199.	1.5	3
345	Molecular hosts for triplet emission in light emitting diodes: A quantum-chemical study. Chemical Physics Letters, 2004, 392, 521-528.	1.2	51
346	Photophysical Properties of Ruthenium(II) Polyazaaromatic Compounds:Â A Theoretical Insight. Journal of the American Chemical Society, 2004, 126, 683-692.	6.6	114
347	Multichromophoric Dendrimers as Single-Photon Sources:Â A Single-Molecule Study. Journal of Physical Chemistry B, 2004, 108, 16686-16696.	1.2	76
348	Charge-transfer states and white emission in organic light-emitting diodes: a theoretical investigation. Synthetic Metals, 2004, 141, 43-49.	2.1	11
349	Towards supramolecular electronics. Synthetic Metals, 2004, 147, 43-48.	2.1	44
350	Resonance energy transfer dynamics in hydrogen-bonded oligo-p-phenylenevinylene nanostructures. Synthetic Metals, 2004, 147, 29-35.	2.1	11
351	Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chemical Reviews, 2004, 104, 4971-5004.	23.0	2,539
352	Absorption and Emission in Quaterthienyl Thin Films. Advanced Materials, 2003, 15, 818-822.	11.1	58
353	Density functional theory and Hartree-Fock studies of the geometric and electronic structure of neutral and doped ethylenedioxythiophene (EDOT) oligomers. International Journal of Quantum Chemistry, 2003, 91, 517-523.	1.0	62
354	Pathways for Photoinduced Charge Separation in DNA Hairpins. Journal of the American Chemical Society, 2003, 125, 14510-14517.	6.6	49
355	Coupled-cluster approach for studying the optical properties of charged π-conjugated oligomers. Synthetic Metals, 2003, 137, 1077-1078.	2.1	4
356	Energy transfer in π-conjugated polymers: Interchain vs. intrachain processes in polyindenofluorene. Synthetic Metals, 2003, 137, 1369-1371.	2.1	15
357	Alternating Oligo(p-phenylene vinylene)â^'Perylene Bisimide Copolymers:Â Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donorâ^'Acceptor Materials. Journal of the American Chemical Society, 2003, 125, 8625-8638.	6.6	195
358	Electronic and optical properties of polyfluorene and fluorene-based copolymers: A quantum-chemical characterization. Journal of Chemical Physics, 2003, 118, 6615-6623.	1.2	160
359	A joint theoretical and experimental study on the electronic properties of phenyl-capped 3,4-ethylenedioxythiophene oligomers. Journal of Chemical Physics, 2003, 119, 10415-10420.	1.2	11
360	Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13146-13151.	3.3	168

#	Article	IF	CITATIONS
361	Theoretical Investigation of the Spinâ€dependent Exciton Formation Rates in Polymeric Lightâ€emitting Diodes. Journal of the Chinese Chemical Society, 2003, 50, 691-702.	0.8	0
362	Green emission from poly(fluorene)s: The role of oxidation. Journal of Chemical Physics, 2002, 117, 6794-6802.	1.2	190
363	Electronic Structure and Optical Properties of Mixed Phenylene Vinylene/Phenylene Ethynylene Conjugated Oligomers. Chemistry of Materials, 2002, 14, 1362-1368.	3.2	38
364	One- and Two-Photon Spectroscopy of Donorâ^'Acceptorâ^'Donor Distyrylbenzene Derivatives:  Effect of Cyano Substitution and Distortion from Planarity. Journal of Physical Chemistry A, 2002, 106, 11470-11480.	1.1	227
365	Photoinduced Electron-Transfer Processes along Molecular Wires Based on Phenylenevinylene Oligomers:Â A Quantum-Chemical Insight. Journal of the American Chemical Society, 2002, 124, 4436-4447.	6.6	128
366	Interchain vs. intrachain energy transfer in acceptor-capped conjugated polymers. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10982-10987.	3.3	362
367	Tuning the two-photon absorption response of quadrupolar organic molecules. Journal of Chemical Physics, 2002, 116, 3646-3658.	1.2	119
368	Optical and Redox Properties of a Series of 3,4-Ethylenedioxythiophene Oligomers. Chemistry - A European Journal, 2002, 8, 2384.	1.7	172
369	Photorefractive Polymers with Non-Destructive Readout. Advanced Functional Materials, 2002, 12, 615-620.	7.8	17
370	Title is missing!. Advanced Functional Materials, 2002, 12, 631-641.	7.8	366
371	Theoretical investigation of the nature of the ground state in the low-bandgap conjugated polymer, poly(3,4-ethylenedioxythiophene). Chemical Physics Letters, 2002, 359, 466-472.	1.2	62
372	Triplet formation and decay in conjugated polymer devices. Chemical Physics Letters, 2002, 360, 195-201.	1.2	99
373	Role of Dimensionality on the Two-Photon Absorption Response of Conjugated Molecules: The Case of Octupolar Compounds. , 2002, 12, 631.		2
374	Spinâ^'Orbit Coupling and Intersystem Crossing in Conjugated Polymers:Â A Configuration Interaction Description. Journal of Physical Chemistry A, 2001, 105, 3899-3907.	1.1	315
375	Interchain interactions in π-conjugated oligomers and polymers: a primer. Synthetic Metals, 2001, 119, 1-6.	2.1	35
376	Singlet and triplet exciton formation rates in conjugated polymer LEDs. Synthetic Metals, 2001, 121, 1637-1638.	2.1	6
377	Electronic structure of π-conjugated oligomers and polymers: a quantum–chemical approach to transport properties. Synthetic Metals, 2001, 125, 107-116.	2.1	79
378	On the luminescence efficiency of polymer light-emitting diodes: a quantum-chemical investigation. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144, 57-62.	2.0	17

#	Article	IF	CITATIONS
379	Photorefractive properties and applications of polymer composites and fully functionalized polymethacrylates. Materials Science and Engineering C, 2001, 18, 25-35.	3.8	4
380	Optical Signature of Delocalized Polarons in Conjugated Polymers. Advanced Functional Materials, 2001, 11, 229-234.	7.8	154
381	Interchain Interactions in Organic π-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport. Advanced Materials, 2001, 13, 1053-1067.	11.1	935
382	Analysis of the sign reversal of the second-order molecular polarizability in polymethineimine chains. Journal of Chemical Physics, 2001, 115, 6766-6774.	1.2	23
383	Interchain Interactions in Organic π-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport. , 2001, 13, 1053.		1
384	Interchain Interactions in Organic π-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport. , 2001, 13, 1053.		2
385	Optical Signature of Delocalized Polarons in Conjugated Polymers. , 2001, 11, 229.		1
386	Optical Signature of Delocalized Polarons in Conjugated Polymers. , 2001, 11, 229.		2
387	Charge Transport versus Optical Properties in Semiconducting Crystalline Organic Thin Films. Advanced Materials, 2000, 12, 978-983.	11.1	67
388	Intermolecular interactions in electroluminescent conjugated materials. Thin Solid Films, 2000, 363, 72-75.	0.8	15
389	Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach. Journal of Chemical Physics, 2000, 112, 4749-4758.	1.2	233
390	Effect of the chromophore donor group and ferrocene doping on the dynamic range, gain, and phase shift in photorefractive polymers. Journal of Chemical Physics, 2000, 113, 5439.	1.2	16
391	Structureâ^'Property Relationships for Two-Photon Absorbing Chromophores:Â Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. Journal of the American Chemical Society, 2000, 122, 9500-9510.	6.6	842
392	Singlet and Triplet Exciton Formation Rates in Conjugated Polymer Light-Emitting Diodes. Physical Review Letters, 2000, 84, 131-134.	2.9	254
393	Effect of wave-function delocalization on the exciton splitting in organic conjugated materials. Physical Review B, 2000, 62, 6296-6300.	1.1	57
394	On the nature of electronic excitations in poly(paraphenylenevinylene): A quantum-chemical investigation. Journal of Chemical Physics, 1999, 111, 2829-2841.	1.2	46
395	Excited-State Electronic Structure of Conjugated Oligomers and Polymers:  A Quantum-Chemical Approach to Optical Phenomena. Accounts of Chemical Research, 1999, 32, 267-276.	7.6	286
396	Exciton coupling in oligothiophenes: A combined experimental/theoretical study. Synthetic Metals, 1999, 102, 912-913.	2.1	8

#	Article	IF	CITATIONS
397	Electroluminescence in Semiconducting Conjugated Polymers and Oligomers: A Quantum-chemical Perspective. International Journal of Polymeric Materials and Polymeric Biomaterials, 1999, 44, 341-355.	1.8	2
398	Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. , 1998, 281, 1653-1656.		2,047
399	Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature, 1998, 392, 903-906.	13.7	321
400	Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores. Chemical Physics Letters, 1998, 298, 1-6.	1.2	318
401	Electronic structure of the lowest singlet and triplet excited states in cyano-substituted oligo(phenylene vinglene)s. Chemical Physics, 1998, 227, 1-10.	0.9	35
402	Investigation of Exciton Coupling in Oligothiophenes by Circular Dichroism Spectroscopy. Advanced Materials, 1998, 10, 1343-1348.	11.1	119
403	The effects of phenyl-di-substitution of PPV on its photophysical and photostability properties. Optical Materials, 1998, 9, 145-149.	1.7	10
404	Synthesis and Characterization of Dinuclear Metal σ-Acetylides and Mononuclear Metal σ-Allenylidenes. Organometallics, 1998, 17, 3034-3043.	1.1	115
405	Interchain interaction in a prototypical conjugated oligomer from polarized absorption at 4.2 K: α-sexithienyl single crystal. Journal of Chemical Physics, 1998, 109, 10513-10520.	1.2	104
406	Electro-optic response of chiral helicenes in isotropic media. Journal of Chemical Physics, 1998, 108, 1301-1304.	1.2	38
407	Investigation of Exciton Coupling in Oligothiophenes by Circular Dichroism Spectroscopy. , 1998, 10, 1343.		1
408	General model for the description of the third-order optical nonlinearitiesin conjugated systems: Application to the all-trans Î'-carotene molecule. Physical Review B, 1997, 55, 1505-1516.	1.1	66
409	Investigation of the linear and nonlinear optical response of edge-linked conjugated zinc porphyrin oligomers by optical spectroscopy and configuration interaction techniques. Journal of Chemical Physics, 1997, 106, 9439-9460.	1.2	94
410	UV photocurrent spectroscopy in poly(p-phenylene vinylene) and derivatives. Synthetic Metals, 1997, 84, 675-676.	2.1	14
411	Spatial extent of the singlet and triplet excitons in cyano-substituted oligo(phenylene vinylene)s. Synthetic Metals, 1997, 85, 1025-1026.	2.1	1
412	Towards a coherent description of the nature of the photogenerated species in the lowest-lying one-photon allowed excited state of isolated conjugated chains. Synthetic Metals, 1997, 85, 1029-1030.	2.1	9
413	Highly polar chromophores in poled polymer films characterised by second harmonic generation. Chemical Physics Letters, 1997, 268, 36-42.	1.2	8
414	The dominant one- and two-photon excited states in the nonlinear optical response of octatetraene: ab initio versus semiempirical theoretical descriptions. Chemical Physics Letters, 1997, 279, 1-8.	1.2	16

#	Article	IF	CITATIONS
415	Photoluminescence spectra of oligo-paraphenyllenevinylenes: a joint theoretical and experimental characterization. Chemical Physics Letters, 1997, 278, 139-145.	1.2	153
416	Influence of Chain Length and Derivatization on the Lowest Singlet and Triplet States and Intersystem Crossing in Oligothiophenes. Journal of the American Chemical Society, 1996, 118, 6453-6461.	6.6	237
417	Electroabsorption spectroscopy of β-carotene and α,ï‰-bis(1,1-dimethylheptyl)-1,3,5,7,9,11,13,15-hexadecaoctaene. Synthetic Metals, 1996, 76, 35-38.	2.1	10
418	Theoretical investigation of the lowest singlet and triplet excited states in oligo(phenylene vinylene)s and oligothiophenes. Synthetic Metals, 1996, 76, 61-65.	2.1	36
419	Poly(p-phenylene vinylene) as active layer in light-emitting diodes: a theoretical investigation of the effects of derivatization. Synthetic Metals, 1996, 76, 101-104.	2.1	30
420	Towards a better understanding of polymer-based light-emitting diodes: a theoretical insight into the basic phenomena. Synthetic Metals, 1996, 78, 209-217.	2.1	40
421	Excited states in bis-substituted polyenes: configuration interaction description of the vertical excitation energies and nonlinear optical properties. Synthetic Metals, 1996, 80, 211-222.	2.1	8
422	Electronic properties of dinuclear ruthenium—acetylide complexes: electrochemical and theoretical characterization. Synthetic Metals, 1996, 81, 179-183.	2.1	18
423	Electroabsorption in poly(paraphenylene vinylene) and PtI: Exciton vs band descriptions. Solid State Communications, 1996, 97, 1063-1067.	0.9	3
424	Linear and nonlinear optical response of dimethyl-amino-nitro-stilbene (DANS): coupled oscillator representation versus sum-over-states picture. Chemical Physics, 1996, 210, 353-366.	0.9	13
425	Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2· H2O. Nature, 1996, 380, 144-146.	13.7	375
426	Twoâ€band tightâ€binding model for push–pull polyenes. Journal of Chemical Physics, 1996, 104, 7270-7283.	1.2	7
427	Spatial extent of the singlet and triplet excitons in transition metalâ€containing polyâ€ynes. Journal of Chemical Physics, 1996, 105, 3868-3877.	1.2	177
428	The coupled electronic oscillators vs the sumâ€overâ€states pictures for the optical response of octatetraene. Journal of Chemical Physics, 1996, 104, 5406-5414.	1.2	23
429	Vibronic structure in the optical absorption spectra of phenylene vinylene oligomers: a joint experimental and theoretical study. Chemical Physics Letters, 1995, 247, 425-432.	1.2	122
430	Twoâ€photon absorption and thirdâ€harmonic generation of diâ€alkylâ€aminoâ€nitroâ€stilbene (DANS): A joint experimental and theoretical study. Journal of Chemical Physics, 1995, 103, 7834-7843.	1.2	88
431	Nature of optical transitions in conjugated oligomers. II. Theoretical characterization of neutral and doped oligothiophenes. Journal of Chemical Physics, 1995, 103, 842-849.	1.2	162

Theoretical investigation of the lowest singlet and triplet states in poly(paraphenylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50_{120}^{62} Td (viny 10 Tf 1.2^{100} Td (viny 10 Tf

#	Article	IF	CITATIONS
433	Nature of optical transitions in conjugated oligomers. I. Theoretical characterization of neutral and doped oligo(phenylenevinylene)s. Journal of Chemical Physics, 1995, 103, 834-841.	1.2	108
434	Theoretical study of pyrrole oligomers: Electronic excitations, relaxation energies, and nonlinear optical properties. Physical Review B, 1994, 50, 2841-2849.	1.1	24
435	Optical absorptions in poly(paraphenylene vinylene) and poly(2,5-dimethoxy-1,4-paraphenylene vinylene) oligomers. Chemical Physics Letters, 1994, 223, 82-88.	1.2	119
436	The evolution of charge-induced gap states in degenerate and non-degenerate conjugated molecules and polymers as studied by photoelectron spectroscopy. Synthetic Metals, 1994, 67, 81-86.	2.1	9
437	Theoretical investigation of the nonlinear optical properties of oligomers of polythienylenemethylidene, a low bandâ€gap material. Journal of Chemical Physics, 1994, 101, 8048-8054.	1.2	9
438	Experimental and theoretical studies of the electronic structure of Na-doped poly (para-phenylenevinylene). Chemical Physics Letters, 1993, 214, 327-332.	1.2	109
439	Influence of molecular architecture and chain length on the nonlinear optical response of conjugated oligomers and polymers. Synthetic Metals, 1993, 57, 3933-3940.	2.1	6
440	Theoretical study of thiophene oligomers: Electronic excitations, relaxation energies, and nonlinear optical properties. Journal of Chemical Physics, 1993, 98, 8819-8828.	1.2	122
441	Nonlinear optical processes in short polyenes: Configuration interaction description of twoâ€photon absorption and thirdâ€harmonic generation. Journal of Chemical Physics, 1992, 97, 1132-1137.	1.2	85
442	Nonlinear optical processes in conjugated polymers: configuration interaction description of linear polyenes and VEH/SOS evaluation of polyarylene vinylenes. Synthetic Metals, 1992, 51, 123-133.	2.1	2
443	Theoretical investigation of the effect of doping on the electronic properties of polyparaphenylene vinylene. Synthetic Metals, 1991, 43, 3743-3746.	2.1	19
444	SSH-Hamiltonian description of the electronic structure and vibrational properties of polyparaphenylene vinylene. Solid State Communications, 1991, 78, 477-480.	0.9	21
445	Long-Range Electrostatics Supercharge Exciton Transport. , 0, , .		0
446	Thermally Evaporated Donor Molecules for Low-Voltage Loss Organic Solar Cells. , 0, , .		0
447	Effect of electronically inert organic spacers on the optoelectronic properties of 2D hybrid perovskites. , 0, , .		0
448	Origin of High Photoluminescence in Mixed-Cation Perovskites: Photodoping from energetic disorder. , 0, , .		0
449	Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. , 0, , .		0
450	Electronic properties of 2D hybrid perovskites: spin-orbit coupling and indirect effect of inert organic spacers. , 0, , .		0

#	Article	IF	CITATIONS
451	A microscopic view on electronic and excitonic effects in (hybrid) organic semiconductors. , 0, , .		0
452	Towards a Functional Organic Layer for Low-Dimensional Hybrids. , 0, , .		0
453	Effect of Electronically Inert Organic Spacers on the Optoelectronic Properties of 2D Hybrid Perovskites. , 0, , .		0
454	Origin of High Photoluminescence in Mixed-Cation Perovskites: Photodoping from energetic disorder. , 0, , .		0
455	Towards a Functional Organic Layer for Low-Dimensional Hybrids. , 0, , .		0
456	Donor:Acceptor Bulk Heterojunction Blends with Large Energy Offset: Nature and Fate of Low-lying CT States. , 0, , .		0
457	Chemical Modifications Suppress Anharmonic Effects in the Lattice Dynamics of Organic Semiconductors. ACS Materials Au, 0, , .	2.6	4