Michael A Rogawski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3974190/publications.pdf Version: 2024-02-01

	9756	13338
18,494	73	130
citations	h-index	g-index
223	223	15006
docs citations	times ranked	citing authors
	citations 223	citations h-index 223 223

#	Article	IF	CITATIONS
1	The neurobiology of antiepileptic drugs. Nature Reviews Neuroscience, 2004, 5, 553-564.	4.9	1,044
2	D-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4926-4931.	3.3	1,020
3	Glia and epilepsy: excitability and inflammation. Trends in Neurosciences, 2013, 36, 174-184.	4.2	656
4	Adjunctive perampanel for refractory partial-onset seizures. Neurology, 2012, 79, 589-596.	1.5	429
5	Molecular targets for antiepileptic drug development. Neurotherapeutics, 2007, 4, 18-61.	2.1	427
6	The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Medicine, 2004, 10, 685-692.	15.2	416
7	Colchicine Myopathy and Neuropathy. New England Journal of Medicine, 1987, 316, 1562-1568.	13.9	394
8	Neuroprotective and disease-modifying effects of the ketogenic diet. Behavioural Pharmacology, 2006, 17, 431-439.	0.8	384
9	GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses. Neuron, 1993, 10, 51-59.	3.8	351
10	The A-current: how ubiquitous a feature of excitable cells is it?. Trends in Neurosciences, 1985, 8, 214-219.	4.2	335
11	The Neuropharmacological Basis for the Use of Memantine in the Treatment of Alzheimer's Disease. CNS Neuroscience & Therapeutics, 2003, 9, 275-308.	4.0	328
12	Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Research, 2006, 69, 273-294.	0.8	311
13	Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines. Trends in Pharmacological Sciences, 1993, 14, 325-331.	4.0	293
14	Revisiting AMPA Receptors as an Antiepileptic Drug Target. Epilepsy Currents, 2011, 11, 56-63.	0.4	274
15	The Neuropharmacology of the Ketogenic Diet. Pediatric Neurology, 2007, 36, 281-292.	1.0	267
16	Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966.	2.0	252
17	Stress-Induced Deoxycorticosterone-Derived Neurosteroids Modulate GABA _A Receptor Function and Seizure Susceptibility. Journal of Neuroscience, 2002, 22, 3795-3805.	1.7	244
18	Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022780	2.9	233

#	Article	IF	CITATIONS
19	Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9298-9302.	3.3	216
20	Commonalities in epileptogenic processes from different acute brain insults: Do they translate?. Epilepsia, 2018, 59, 37-66.	2.6	206
21	Mechanism of action of the anticonvulsant felbamate: Opposing effects onN-methyl-D-aspartate and ?-aminobutyric acidA receptors. Annals of Neurology, 1994, 35, 229-234.	2.8	201
22	Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurologica Scandinavica, 2013, 127, 19-24.	1.0	200
23	Selective Antagonism of GluR5 Kainate-Receptor-Mediated Synaptic Currents by Topiramate in Rat Basolateral Amygdala Neurons. Journal of Neuroscience, 2003, 23, 7069-7074.	1.7	199
24	Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation. Nature, 1980, 287, 731-734.	13.7	198
25	Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology, 2003, 60, 1413-1417.	1.5	191
26	AMPA receptors as a molecular target in epilepsy therapy. Acta Neurologica Scandinavica, 2013, 127, 9-18.	1.0	183
27	Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Research, 1992, 11, 9-16.	0.8	168
28	Allopregnanolone Analogs That Positively Modulate GABAA Receptors Protect against Partial Seizures Induced by 6-Hz Electrical Stimulation in Mice. Epilepsia, 2004, 45, 864-867.	2.6	167
29	Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Research, 2015, 110, 189-205.	0.8	163
30	Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Science Translational Medicine, 2019, 11, .	5.8	157
31	Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons Journal of Physiology, 1996, 497, 509-522.	1.3	154
32	Anticonvulsant Activity of Progesterone and Neurosteroids in Progesterone Receptor Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 230-239.	1.3	154
33	Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca2+ in cultured rat hippocampal neurons. Neuroscience Letters, 1992, 141, 30-34.	1.0	153
34	Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Molecular Psychiatry, 2008, 13, 858-872.	4.1	153
35	Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology, 1996, 35, 1049-1056.	2.0	148
36	The NMDA Receptor, NMDA Antagonists and Epilepsy Therapy. Drugs, 1992, 44, 279-292.	4.9	147

#	Article	IF	CITATIONS
37	A model of the T-type calcium current and the low-threshold spike in thalamic neurons. Journal of Neurophysiology, 1991, 66, 839-850.	0.9	146
38	How theories evolved concerning the mechanism of action of barbiturates. Epilepsia, 2012, 53, 12-25.	2.6	146
39	Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Research, 2006, 68, 22-28.	0.8	140
40	Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBQX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Research, 1993, 15, 179-184.	0.8	134
41	Neurosteroid Withdrawal Model of Perimenstrual Catamenial Epilepsy. Epilepsia, 2002, 42, 328-336.	2.6	134
42	Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology, 2005, 48, 14-24.	2.0	134
43	Norepinephrine and serotonin: Opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Experimental Neurology, 1980, 69, 678-694.	2.0	131
44	Neuroactive steroids for the treatment of status epilepticus. Epilepsia, 2013, 54, 93-98.	2.6	131
45	Intrinsic Severity as a Determinant of Antiepileptic Drug Refractoriness. Epilepsy Currents, 2008, 8, 127-130.	0.4	129
46	KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends in Neurosciences, 2000, 23, 393-398.	4.2	128
47	Neurosteroid Replacement Therapy for Catamenial Epilepsy. Neurotherapeutics, 2009, 6, 392-401.	2.1	120
48	Anandamide, an Endogenous Cannabinoid, Inhibits Shaker -related Voltage-gated K + Channels. Neuropharmacology, 1996, 35, 983-991.	2.0	118
49	Common Pathophysiologic Mechanisms in Migraine and Epilepsy. Archives of Neurology, 2008, 65, 709-14.	4.9	117
50	Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Neuropharmacology, 2004, 46, 1097-1104.	2.0	114
51	Activation of lateral geniculate neurons by norepinephrine: Mediation by an α-adrenergic receptor. Brain Research, 1980, 182, 345-359.	1.1	113
52	Bidirectional Synaptic Plasticity in the Rat Basolateral Amygdala: Characterization of an Activity-Dependent Switch Sensitive to the Presynaptic Metabotropic Glutamate Receptor Antagonist 2S-α-Ethylglutamic Acid. Journal of Neuroscience, 1998, 18, 1662-1670.	1.7	110
53	Pediatric superâ€refractory status epilepticus treated with allopregnanolone. Annals of Neurology, 2014, 76, 911-915.	2.8	106
54	Activation of lateral geniculate neurons by locus coeruleus or dorsal noradrenergic bundle stimulation: Selective blockade by the alpha1-adrenoceptor antagonist prazosin. Brain Research, 1982, 250, 31-39.	1.1	104

#	Article	IF	CITATIONS
55	Enhanced Anticonvulsant Activity of Neuroactive Steroids in a Rat Model of Catamenial Epilepsy. Epilepsia, 2002, 42, 337-344.	2.6	104
56	Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents - toward an understanding of their favorable tolerability. Amino Acids, 2000, 19, 133-149.	1.2	103
57	Effects of 4-aminopyridine on calcium action potentials and calcium current under voltage clamp in spinal neurons. Brain Research, 1983, 280, 180-185.	1.1	102
58	Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nature Neuroscience, 2001, 4, 612-620.	7.1	102
59	Future directions for epilepsy research. Neurology, 2001, 57, 1536-1542.	1.5	99
60	Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro. PLoS Biology, 2005, 3, e87.	2.6	98
61	New molecular targets for antiepileptic drugs: α2δ, SV2A, and Kv7/KCNQ/M potassium channels. Current Neurology and Neuroscience Reports, 2008, 8, 345-352.	2.0	98
62	GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro. Neuropharmacology, 1998, 37, 1279-1286.	2.0	97
63	Anticonvulsant Activity of Androsterone and Etiocholanolone. Epilepsia, 2005, 46, 819-827.	2.6	93
64	Clustered burst firing in FMR1 premutation hippocampal neurons: amelioration with allopregnanolone. Human Molecular Genetics, 2012, 21, 2923-2935.	1.4	92
65	Tetrahydroaminoacridine blocks voltage-dependent ion channels in hippocampal neurons. European Journal of Pharmacology, 1987, 142, 169-172.	1.7	90
66	Cerebellar Ataxia, Seizures, Premature Death, and Cardiac Abnormalities in Mice with Targeted Disruption of the Cacna2d2 Gene. American Journal of Pathology, 2004, 165, 1007-1018.	1.9	88
67	Ganaxolone suppression of behavioral and electrographic seizures in the mouse amygdala kindling model. Epilepsy Research, 2010, 89, 254-260.	0.8	86
68	The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia, 2013, 54, 33-40.	2.6	85
69	Generalized Epileptic Disorders: Anâ€∫Update. Epilepsia, 2001, 42, 445-457.	2.6	81
70	Convection-Enhanced Delivery in the Treatment of Epilepsy. Neurotherapeutics, 2009, 6, 344-351.	2.1	81
71	Felbamate block of recombinant N-methyl-d-aspartate receptors: selectivity for the NR2B subunit. Epilepsy Research, 2000, 39, 47-55.	0.8	78
72	Response of central monoaminergic neurons to lisuride: Comparison with LSD. Life Sciences, 1979, 24, 1289-1297.	2.0	77

#	Article	IF	CITATIONS
73	The Potential of Antiseizure Drugs and Agents that Act on Novel Molecular Targets as Antiepileptogenic Treatments. Neurotherapeutics, 2014, 11, 385-400.	2.1	76
74	Issues related to development of new antiseizure treatments. Epilepsia, 2013, 54, 24-34.	2.6	74
75	Endogenous neurosteroids modulate epileptogenesis in a model of temporal lobe epilepsy. Experimental Neurology, 2006, 201, 519-524.	2.0	69
76	The Anticonvulsant Activity of Acetone, the Major Ketone Body in the Ketogenic Diet, Is Not Dependent on Its Metabolites Acetol, 1,2-Propanediol, Methylglyoxal, or Pyruvic Acid. Epilepsia, 2007, 48, 793-800.	2.6	69
77	Brivaracetam: a rational drug discovery success story. British Journal of Pharmacology, 2008, 154, 1555-1557.	2.7	69
78	Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiology of Disease, 2020, 133, 104431.	2.1	69
79	New strategies for the identification of drugs to prevent the development or progression of epilepsy. Epilepsy Research, 2002, 50, 71-78.	0.8	68
80	Update on the Neurobiology of Alcohol Withdrawal Seizures. Epilepsy Currents, 2005, 5, 225-230.	0.4	67
81	Treatment of early and late kainic acidâ€induced status epilepticus with the noncompetitive AMPA receptor antagonist GYKI 52466. Epilepsia, 2010, 51, 108-117.	2.6	64
82	Docosahexaenoic Acid Block of Neuronal Voltage-gated K + Channels: Subunit Selective Antagonism by Zinc. Neuropharmacology, 1996, 35, 969-982.	2.0	63
83	Topiramate Reduces Excitability in the Basolateral Amygdala by Selectively Inhibiting GluK1 (GluR5) Kainate Receptors on Interneurons and Positively Modulating GABA _A Receptors on Principal Neurons. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 558-566.	1.3	63
84	Treatment of Infantile Spasms. Journal of Child Neurology, 2011, 26, 1411-1421.	0.7	63
85	MELATONIN: DEACETYLATION TO 5-METHOXYTRYPTAMINE BY LIVER BUT NOT BRAIN ARYL ACYLAMIDASE. Journal of Neurochemistry, 1979, 32, 1219-1226.	2.1	59
86	Convulsant actions of the neurosteroid pregnenolone sulfate in mice. Brain Research, 1999, 831, 119-124.	1.1	58
87	Anticonvulsant and proconvulsant actions of 2â€deoxyâ€ <scp>d</scp> â€glucose. Epilepsia, 2010, 51, 1385-1394.	2.6	58
88	GluR5 Kainate Receptors, Seizures, and the Amygdala. Annals of the New York Academy of Sciences, 2003, 985, 150-162.	1.8	56
89	Dizocilpine-like Discriminative Stimulus Effects of Low-affinity Uncompetitive NMDA Antagonists. Neuropharmacology, 1996, 35, 1709-1719.	2.0	55
90	Mechanisms of action of antiseizure drugs. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 108, 663-681.	1.0	55

#	Article	IF	CITATIONS
91	Epoxy Fatty Acids and Inhibition of the Soluble Epoxide Hydrolase Selectively Modulate GABA Mediated Neurotransmission to Delay Onset of Seizures. PLoS ONE, 2013, 8, e80922.	1.1	54
92	New Antiepileptic Drugs: From Serendipity to Rational Discovery. Epilepsia, 1992, 33, S1-6.	2.6	51
93	Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology, 2001, 40, 28-35.	2.0	51
94	Efficacy of the ketogenic diet in the 6â€Hz seizure test. Epilepsia, 2008, 49, 334-339.	2.6	51
95	Neurosteroids and epileptogenesis in the pilocarpine model: Evidence for a relationship between P450scc induction and length of the latent period. Epilepsia, 2009, 50, 53-58.	2.6	50
96	Induction of seizures by the potent K+ channel-blocking scorpion venom peptide toxins tityustoxin-Kα and pandinustoxin-Kα. Epilepsy Research, 1999, 34, 177-186.	0.8	49
97	Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Research, 2006, 70, 200-210.	0.8	49
98	Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience, 2009, 163, 415-429.	1.1	49
99	Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models. Scientific Data, 2017, 4, 170061.	2.4	47
100	Synthesis and anticonvulsant activity of 1-phenylcyclohexylamine analogs. Journal of Medicinal Chemistry, 1990, 33, 1452-1458.	2.9	46
101	High concentrations of neutral amino acids activate NMDA receptor currents in rat hippocampal neurons. Neuroscience Letters, 1992, 141, 97-100.	1.0	46
102	Intramuscular allopregnanolone and ganaxolone in a mouse model of treatmentâ€resistant status epilepticus. Epilepsia, 2018, 59, 220-227.	2.6	46
103	Cholecystokinin octapeptide: Effects on the excitability of cultured spinal neurons. Peptides, 1982, 3, 545-551.	1.2	45
104	Ibogaine block of the NMDA receptor: In vitro and in vivo studies. Neuropharmacology, 1996, 35, 423-431.	2.0	45
105	Epilepsy therapy development: Technical and methodologic issues in studies with animal models. Epilepsia, 2013, 54, 13-23.	2.6	44
106	Neurosteroids—Endogenous Regulators of Seizure Susceptibility and Role in the Treatment of Epilepsy. , 2012, , 984-1002.		44
107	Charybdotoxin, dendrotoxin and mast cell degranulating peptide block the voltage-activated K+ current of fibroblast cells stably transfected with NGK1 (Kvl.2) K+ channel complementary DNA. Neuroscience, 1992, 50, 935-946.	1.1	43
108	Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology, 2016, 233, 309-323.	1.5	43

#	Article	IF	CITATIONS
109	Open-Label Allopregnanolone Treatment of Men with Fragile X-Associated Tremor/Ataxia Syndrome. Neurotherapeutics, 2017, 14, 1073-1083.	2.1	43
110	Neurosteroids and infantile spasms: The deoxycorticosterone hypothesis. International Review of Neurobiology, 2002, 49, 199-219.	0.9	42
111	Prolonged Attenuation of Amygdala-Kindled Seizure Measures in Rats by Convection-Enhanced Delivery of the N-Type Calcium Channel Antagonists ω-Conotoxin GVIA and ω-Conotoxin MVIIA. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 458-468.	1.3	42
112	Tetramethylenedisulfotetramine Alters Ca2+ Dynamics in Cultured Hippocampal Neurons: Mitigation by NMDA Receptor Blockade and GABAA Receptor-Positive Modulation. Toxicological Sciences, 2012, 130, 362-372.	1.4	42
113	Characterization of Seizures Induced by Acute and Repeated Exposure to Tetramethylenedisulfotetramine. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 435-446.	1.3	41
114	Role of GluK1 Kainate Receptors in Seizures, Epileptic Discharges, and Epileptogenesis. Journal of Neuroscience, 2014, 34, 5765-5775.	1.7	39
115	Allopregnanolone Preclinical Acute Pharmacokinetic and Pharmacodynamic Studies to Predict Tolerability and Efficacy for Alzheimer's Disease. PLoS ONE, 2015, 10, e0128313.	1.1	39
116	Perampanel Inhibition of AMPA Receptor Currents in Cultured Hippocampal Neurons. PLoS ONE, 2014, 9, e108021.	1.1	38
117	Firstâ€inâ€man allopregnanolone use in superâ€refractory status epilepticus. Annals of Clinical and Translational Neurology, 2017, 4, 411-414.	1.7	37
118	Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Research, 2003, 55, 71-82.	0.8	36
119	ls a separate monotherapy indication warranted for antiepileptic drugs?. Lancet Neurology, The, 2015, 14, 1229-1240.	4.9	36
120	Protection against dendrotoxin-induced clonic seizures in mice by anticonvulsant drugs. Brain Research, 1992, 575, 138-142.	1.1	34
121	Effects of D1 and D2 dopamine receptor antagonists and catecholamine depleting agents on the locomotor stimulation induced by dizocilpine in mice. Behavioural Brain Research, 1995, 70, 145-151.	1.2	34
122	Allosteric regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors by thiocyanate and cyclothiazide at a common modulatory site distinct from that of 2,3-benzodiazepines. Neuroscience, 1998, 87, 615-629.	1.1	34
123	Input-specific LTP and depotentiation in the basolateral amygdala. NeuroReport, 2001, 12, 635-640.	0.6	33
124	The Riluzole Derivative 2-Amino-6-trifluoromethylthio-benzothiazole (SKA-19), a Mixed KCa2 Activator and NaV Blocker, is a Potent Novel Anticonvulsant. Neurotherapeutics, 2015, 12, 234-249.	2.1	33
125	Electrical Properties of Cultured Human Adrenocorticotropin-Secreting Adenoma Cells: Effects of High K+, Corticotropin-Releasing Factor, and Angiotensin II*. Endocrinology, 1987, 121, 395-405.	1.4	32
126	The Pheromone Androstenol (5α-Androst-16-en-3α-ol) Is a Neurosteroid Positive Modulator of GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 694-703.	1.3	31

#	Article	IF	CITATIONS
127	Astrocytes get in the act in epilepsy. Nature Medicine, 2005, 11, 919-920.	15.2	30
128	"Jasper's Basic Mechanisms of the Epilepsies―Workshop. Epilepsia, 2010, 51, 1-5.	2.6	30
129	Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication. Toxicology and Applied Pharmacology, 2014, 281, 185-194.	1.3	29
130	Effects of the synthetic neurosteroid ganaxolone on seizure activity and behavioral deficits in an Angelman syndrome mouse model. Neuropharmacology, 2017, 116, 142-150.	2.0	29
131	Progesterone, neurosteroids, and the hormonal basis of catamenial epilepsy. Annals of Neurology, 2003, 53, 288-291.	2.8	28
132	Allopregnanolone Treatment Improves Plasma Metabolomic Profile Associated with GABA Metabolism in Fragile X-Associated Tremor/Ataxia Syndrome: a Pilot Study. Molecular Neurobiology, 2019, 56, 3702-3713.	1.9	28
133	Vasopressin enhances a calcium current in human ACTHâ€secreting pituitary adenoma cells. FASEB Journal, 1988, 2, 2907-2912.	0.2	27
134	Compromised function in the Nav1.2 Dravet syndrome mutation R1312T. Neurobiology of Disease, 2012, 47, 378-384.	2.1	25
135	New directions in neurotransmitter action: dopamine provides some important clues. Trends in Neurosciences, 1987, 10, 200-205.	4.2	24
136	Potassium channel activators counteract anoxic hyperexcitability but not 4-aminopyridine-induced epileptiform activity in the rat hippocampal slice. Neuropharmacology, 1994, 33, 1515-1522.	2.0	24
137	Models to identify treatments for the acute and persistent effects of seizureâ€inducing chemical threat agents. Annals of the New York Academy of Sciences, 2016, 1378, 124-136.	1.8	24
138	A New SV2A Ligand for Epilepsy. Cell, 2016, 167, 587.	13.5	24
139	Role of neurosteroids in the anticonvulsant activity of midazolam. British Journal of Pharmacology, 2012, 165, 2684-2691.	2.7	23
140	Propofol hemisuccinate suppresses cortical spreading depression. Neuroscience Letters, 2012, 514, 67-70.	1.0	23
141	Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology, 2015, 95, 332-342.	2.0	23
142	Defective GABAergic neurotransmission in the nucleus tractus solitarius in Mecp2-null mice, a model of Rett syndrome. Neurobiology of Disease, 2018, 109, 25-32.	2.1	23
143	Diazepam buccal film for the treatment of acute seizures. Epilepsy and Behavior, 2019, 101, 106537.	0.9	23
144	Phencyclidine block of calcium current in isolated guinea-pig hippocampal neurones Journal of Physiology, 1992, 456, 85-105.	1.3	22

#	Article	IF	CITATIONS
145	The chemical convulsant diisopropylfluorophosphate (DFP) causes persistent neuropathology in adult male rats independent of seizure activity. Archives of Toxicology, 2020, 94, 2149-2162.	1.9	20
146	LP-BM5 virus–infected mice produce activating autoantibodies to the AMPA receptor. Journal of Clinical Investigation, 2001, 107, 737-744.	3.9	20
147	Allopregnanolone and perampanel as adjuncts to midazolam for treating diisopropylfluorophosphateâ€induced status epilepticus in rats. Annals of the New York Academy of Sciences, 2020, 1480, 183-206.	1.8	19
148	BRL 34915 (cromakalim) enhances voltage-dependent K+ current in cultured rat hippocampal neurons. European Journal of Pharmacology, 1989, 168, 7-14.	1.7	18
149	11β-Hydroxylase inhibitors protect against seizures in mice by increasing endogenous neurosteroid synthesis. Neuropharmacology, 2011, 61, 133-137.	2.0	18
150	Allopregnanolone decreases interictal spiking and fast ripples in an animal model of mesial temporal lobe epilepsy. Neuropharmacology, 2017, 121, 12-19.	2.0	18
151	Rapid Throughput Analysis of GABA _A Receptor Subtype Modulators and Blockers Using DiSBAC ₁ (3) Membrane Potential Red Dye. Molecular Pharmacology, 2017, 92, 88-99.	1.0	18
152	Does P-glycoprotein play a role in pharmacoresistance to antiepileptic drugs?. Epilepsy and Behavior, 2002, 3, 493-495.	0.9	17
153	Neurosteroids as endogenous regulators of seizure susceptibility and use in the treatment of epilepsy. Epilepsia, 2010, 51, 84-84.	2.6	17
154	Altered fast and slow inactivation of the N440K Na _v 1.4 mutant in a periodic paralysis syndrome. Neurology, 2012, 79, 1033-1040.	1.5	17
155	Proconvulsant actions of intrahippocampal botulinum neurotoxin B in the rat. Neuroscience, 2013, 252, 253-261.	1.1	16
156	Long-Lasting Attenuation of Amygdala-Kindled Seizures after Convection-Enhanced Delivery of Botulinum Neurotoxins A and B into the Amygdala in Rats. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 528-534.	1.3	16
157	A fatty acid in the MCT ketogenic diet for epilepsy treatment blocks AMPA receptors. Brain, 2016, 139, 306-309.	3.7	16
158	Transient outward current (I A) in clonal anterior pituitary cells: blockade by aminopyridine analogs. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 338, 125-32.	1.4	15
159	What Is the Rationale for New Treatment Strategies in Alzheimer's Disease?. CNS Spectrums, 2004, 9, 6-12, 31.	0.7	15
160	Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala. Journal of Neurochemistry, 2005, 94, 1728-1738.	2.1	15
161	Regulation of Brain Water: Is there a Role for Aquaporins in Epilepsy?. Epilepsy Currents, 2005, 5, 104-106.	0.4	15
162	Seizure Protection by Intrapulmonary Delivery of Propofol Hemisuccinate. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 215-222.	1.3	15

#	Article	IF	CITATIONS
163	Safety, tolerability, and pharmacokinetics of allopregnanolone as a regenerative therapeutic for Alzheimer's disease: A single and multiple ascending dose phase 1b/2a clinical trial. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12107.	1.8	15

164 Anticonvulsant Efficacy of ADCI (5-Aminocarbonyl-10, 11-dihydro-5H-dibenzo[a, d]) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (cyclob

165	Determination of minimal steadyâ€state plasma level of diazepam causing seizure threshold elevation in rats. Epilepsia, 2018, 59, 935-944.	2.6	14
166	Acetylcholine. , 1985, , 143-197.		12
167	Anticonvulsant 1-Phenylcycloalkylamines: Two Analogues with Low Motor Toxicity When Orally Administered. Epilepsia, 1992, 33, 188-194.	2.6	11
168	1,10-Diaminodecane and 1,12-diaminododecane block NMDA receptor currents by an open channel mechanism. Neuroscience Letters, 1992, 147, 213-216.	1.0	11
169	Anticonvulsant potencies of the enantiomers of the neurosteroids androsterone and etiocholanolone exceed those of the natural forms. Psychopharmacology, 2014, 231, 3325-3332.	1.5	11
170	Intranasal Allopregnanolone Confers Rapid Seizure Protection: Evidence for Direct Nose-to-Brain Delivery. Neurotherapeutics, 2021, 18, 544-555.	2.1	11
171	Effects of ethanol on tryptophan hydroxylase activity from striate synaptosomes. Biochemical Pharmacology, 1974, 23, 1955-1962.	2.0	10
172	Alaproclate effects on voltage-dependent K+ channels and NMDA receptors: Studies in cultured rat hippocampal neurons and fibroblast cells transformed with Kvl.2 K+ channel cDNA. Neuropharmacology, 1994, 33, 795-804.	2.0	10
173	Epileptiform activity extinguished by amygdala infusion of the neurotoxin ibotenate in a rat model of temporal lobe epilepsy. Journal of Neurosurgery, 2002, 97, 450-454.	0.9	10
174	2014 Epilepsy Benchmarks Area III: Improve Treatment Options for Controlling Seizures and Epilepsy-Related Conditions without Side Effects. Epilepsy Currents, 2016, 16, 192-197.	0.4	10
175	The Ketogenic Diet: Stoking the Powerhouse of the Cell. Epilepsy Currents, 2007, 7, 58-60.	0.4	9
176	Nontraditional Epilepsy Treatment Approaches. Neurotherapeutics, 2009, 6, 213-217.	2.1	9
177	Disclosure of Clinical Trial Results When Product Development Is Abandoned. Science Translational Medicine, 2011, 3, 102cm29.	5.8	9
178	Reduced efficacy and risk of seizure aggravation when cannabidiol is used without clobazam. Epilepsy and Behavior, 2020, 103, 106506.	0.9	9
179	Epilepsy Benchmarks Area III: Improved Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Currents, 2020, 20, 23S-30S.	0.4	9
180	Cycloleucine blocks NMDA responses in cultured hippocampal neurones under voltage clamp: antagonism at the strychnineâ€insensitive glycine receptor. British Journal of Pharmacology, 1989, 98, 1005-1013.	2.7	8

#	Article	IF	CITATIONS
181	Muscarinic antagonists attenuate dizocilpine-induced hypermotility in mice. Life Sciences, 1992, 50, PL59-PL64.	2.0	8
182	Seizure protection by intrapulmonary delivery of midazolam in mice. Neuropharmacology, 2013, 73, 425-431.	2.0	8
183	Contrasting actions of a convulsant barbiturate and its anticonvulsant enantiomer on the α ₁ β ₃ γ _{2L} GABA _A receptor account for their <i>in vivo</i> effects. Journal of Physiology, 2015, 593, 4943-4961.	1.3	8
184	Cortical excitability threshold can be increased by the AMPA blocker Perampanel in amyotrophic lateral sclerosis. Muscle and Nerve, 2021, 64, 215-219.	1.0	8
185	IgG Isolated from LP-BM5 Infected Mouse Brain Activates Ionotropic Glutamate Receptors. Neurobiology of Disease, 2001, 8, 1069-1081.	2.1	7
186	Migraine and epilepsy: Shared mechanisms?. Epilepsia, 2010, 51, 80-80.	2.6	7
187	Antiepileptic drugs and migraine. , 2008, , 153-178.		7
188	RTI-4793-14, a new ligand with high affinity and selectivity for the (+)-MK801-insensitive [3H]1-[1-(2) Tj ETQq0 0	0 rgBT /C)verlock 10 Tf
189	New Evidence Supporting a Role for T-Type Ca2+ Channels in Absence Epilepsy and in the Action of Ethosuximide. Epilepsy Currents, 2002, 2, 57-57.	0.4	5
190	The anticonvulsant activity of acetone does not depend upon its metabolites. Epilepsia, 2008, 49, 936-937.	2.6	5
191	17β-Nitro-5α-androstan-3α-ol and its 3β-methyl derivative: Neurosteroid analogs with potent anticonvulsant and anxiolytic activities. European Journal of Pharmacology, 2009, 617, 68-73.	1.7	5
192	Antiepileptogenesis by Deep Brain Stimulation. Epilepsy Currents, 2002, 2, 153-154.	0.4	4
193	Alcohol Withdrawal Seizures. , 2006, , 161-177.		4
194	Intravenous and Intramuscular Allopregnanolone for Early Treatment of Status Epilepticus: Pharmacokinetics, Pharmacodynamics, and Safety in Dogs. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 104-113.	1.3	4
195	Letters to the Editor. Epilepsia, 2000, 41, 918-918.	2.6	2
196	Perampanel, a potent AMPA receptor antagonist, protects against tetramethylenedisulfotetramine-induced seizures and lethality in mice: comparison with diazepam. Archives of Toxicology, 2021, 95, 2459-2468.	1.9	2
197	Strain differences in the extent of brain injury in mice after tetramethylenedisulfotetramine-induced status epilepticus. NeuroToxicology, 2021, 87, 43-50.	1.4	1
198	Neuroinflammatory Responses in a Mouse Model of Tetramethylenedisulfotetramineâ€Induced Status	0.2	1

⁸ Epilepticus. FASEB Journal, 2018, 32, lb645.

#	Article	IF	CITATIONS
199	Pharmacology of Glutamate Receptors. , 0, , 23-50.		1
200	Support for the NIH Public Access Policy. Science, 2006, 313, 1572a-1572a.	6.0	0
201	Common Mechanisms in Migraine and Epilepsy: A Comment—Reply. Archives of Neurology, 2008, 65, 1546.	4.9	0
202	Neurotherapeutics to Publish Primary Research Papers. Neurotherapeutics, 2010, 7, 229.	2.1	0
203	Neurosteroids on the Epilepsy Chessboard—Keeping Seizures in Check. Epilepsy Currents, 2010, 10, 161-163.	0.4	0
204	A New Policy for Disclosure of Competing Interests. Epilepsy Currents, 2011, 11, 7-8.	0.4	0
205	Protective Efficacy and Potency of Neuroactive Steroids and Benzodiazepines in the Amygdala Kindling Model of Epilepsy. FASEB Journal, 2009, 23, 947.6.	0.2	0
206	Neurosteroid Replacement Therapy for Catamenial Epilepsy. , 2010, , 501-513.		0