## Huanrong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/397413/publications.pdf Version: 2024-02-01



HUANDONGLI

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Deepâ€Blue Delayed Fluorescence Supramolecular Assembly with Ultrahigh Quantum Yields of 81% from<br>an Extraordinary Source of π–π* Transition. Advanced Optical Materials, 2022, 10, 2101622.         | 7.3  | 12        |
| 2  | Highly Luminescent and Stable Organic–Inorganic Hybrid Films for Transparent Luminescent Solar<br>Concentrators. ACS Applied Materials & Interfaces, 2022, 14, 5951-5958.                               | 8.0  | 15        |
| 3  | Tunable luminescence of silver-exchanged SOD zeolite thermally treated under mild conditions.<br>Journal of Materials Chemistry C, 2022, 10, 1666-1671.                                                 | 5.5  | 10        |
| 4  | Ultrastretchable Luminescent Nanocomposite Hydrogel with Self-Healing Behavior. ACS Applied Polymer Materials, 2022, 4, 2329-2336.                                                                      | 4.4  | 9         |
| 5  | Time―and Excitation Wavelength―Dependent Afterglow Supramolecular Assembly for Multiâ€Modal<br>Antiâ€Counterfeiting Application. ChemistrySelect, 2022, 7, .                                            | 1.5  | 0         |
| 6  | Spontaneously Self-Regenerative Hybrid Luminescent Hydrogel. ACS Applied Polymer Materials, 2021, 3,<br>604-609.                                                                                        | 4.4  | 6         |
| 7  | Co-cross-linked lanthanide-containing nanocomposite luminescent hydrogels. New Journal of Chemistry, 2021, 45, 5252-5257.                                                                               | 2.8  | 4         |
| 8  | Adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular<br>host–guest interactions in luminescent hydrogels. Inorganic Chemistry Frontiers, 2021, 8, 1482-1488. | 6.0  | 7         |
| 9  | Photoresponsive supramolecular coordination polyelectrolyte as smart anticounterfeiting inks.<br>Nature Communications, 2021, 12, 1363.                                                                 | 12.8 | 160       |
| 10 | Color-Tunable Aqueous Room-Temperature Phosphorescence Supramolecular Assembly. ACS Applied<br>Materials & Interfaces, 2021, 13, 14407-14416.                                                           | 8.0  | 37        |
| 11 | A SnO <sub><i>x</i></sub> Quantum Dots Embedded Carbon Nanocage Network with Ultrahigh Li<br>Storage Capacity. ACS Nano, 2021, 15, 7021-7031.                                                           | 14.6 | 26        |
| 12 | Multistimuli-Responsive Lanthanide-Containing Smart Luminescent Hydrogel Actuator. ACS Applied<br>Materials & Interfaces, 2021, 13, 20633-20640.                                                        | 8.0  | 48        |
| 13 | Smart luminescent hydrogel with superior mechanical performance based on polymer networks<br>embedded with lanthanide containing clay nanocomposites. Nanoscale, 2021, 13, 11380-11386.                 | 5.6  | 13        |
| 14 | Organic–Inorganic Hybrid Luminescent Hydrogel Glued by a Cationic Polymeric Binder.<br>Macromolecular Rapid Communications, 2021, , 2100562.                                                            | 3.9  | 1         |
| 15 | Mechanofluorochromic carbon dots under grinding stimulation. Nanoscale, 2020, 12, 16433-16437.                                                                                                          | 5.6  | 6         |
| 16 | Self-Healing Material with Reversible Luminescence Switch Behavior. ACS Applied Materials &<br>Interfaces, 2020, 12, 54026-54034.                                                                       | 8.0  | 48        |
| 17 | A Robust Mixed‣anthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte<br>Chemie - International Edition, 2020, 59, 21752-21757                                                      | 13.8 | 115       |
| 18 | A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte<br>Chemie, 2020, 132, 21936-21941.                                                                          | 2.0  | 23        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Highly Stretchable and Fast Self-Healing Luminescent Materials. ACS Applied Materials &<br>Interfaces, 2020, 12, 13239-13247.                                                                              | 8.0  | 42        |
| 20 | Photovoltaic efficiency enhancement of polycrystalline silicon solar cells by a highly stable<br>luminescent film. Science China Materials, 2020, 63, 544-551.                                             | 6.3  | 39        |
| 21 | Protonâ€Activated Amorphous Roomâ€Temperature Phosphorescence for Humidity Sensing and Highâ€Level<br>Data Encryption. Chemistry - an Asian Journal, 2020, 15, 1088-1093.                                  | 3.3  | 10        |
| 22 | A Durable Gel Polymer Electrolyte with Excellent Cycling and Rate Performance for Enhanced Lithium Storage. ACS Applied Energy Materials, 2020, 3, 4906-4913.                                              | 5.1  | 10        |
| 23 | A sustainable route from kelp to a porous MnO/C network anode for high-capacity lithium-ion batteries. Journal of Materials Science, 2020, 55, 10740-10750.                                                | 3.7  | 7         |
| 24 | Orange to Red, Emission-Tunable Mn-Doped Two-Dimensional Perovskites with High Luminescence and Stability. ACS Applied Materials & Interfaces, 2019, 11, 34109-34116.                                      | 8.0  | 75        |
| 25 | Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information<br>Anticounterfeiting. Angewandte Chemie - International Edition, 2019, 58, 18025-18031.                         | 13.8 | 205       |
| 26 | One Stone, Two Birds: High-Efficiency Blue-Emitting Perovskite Nanocrystals for LED and Security Ink<br>Applications. Chemistry of Materials, 2019, 31, 5116-5123.                                         | 6.7  | 66        |
| 27 | Luminescence resonance energy transfer in hybrid materials based on terbium( <scp>iii</scp> ) complex, rhodamine B and nanoclay. New Journal of Chemistry, 2019, 43, 8439-8443.                            | 2.8  | 13        |
| 28 | Visual multiple color emission of solid-state carbon dots. Journal of Materials Chemistry C, 2019, 7, 7806-7811.                                                                                           | 5.5  | 15        |
| 29 | Ammonia-Responsive Luminescence of Ln3+-β-diketonate Complex Encapsulated within Zeolite Y.<br>Molecules, 2019, 24, 685.                                                                                   | 3.8  | 3         |
| 30 | A magnetofluorescent boron-doped carbon dots as a metal-free bimodal probe. Talanta, 2019, 200, 9-14.                                                                                                      | 5.5  | 13        |
| 31 | White-emitting phosphors with high color-rendering index based on silver cluster-loaded zeolites and their application to near-UV LED-based white LEDs. Materials Chemistry Frontiers, 2019, 3, 1080-1084. | 5.9  | 30        |
| 32 | Tunable afterglow luminescence and triple-mode emissions of thermally activated carbon dots confined within nanoclays. Journal of Materials Chemistry C, 2019, 7, 13640-13646.                             | 5.5  | 44        |
| 33 | Flexible and transparent films consisting of lanthanide complexes for ratiometric luminescence thermometry. Journal of Colloid and Interface Science, 2018, 519, 11-17.                                    | 9.4  | 43        |
| 34 | Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability.<br>Journal of Materials Chemistry C, 2018, 6, 1153-1159.                                                      | 5.5  | 57        |
| 35 | Reversible Phase Transition of Robust Luminescent Hybrid Hydrogels. Angewandte Chemie -<br>International Edition, 2018, 57, 2194-2198.                                                                     | 13.8 | 149       |
| 36 | Reversible Phase Transition of Robust Luminescent Hybrid Hydrogels. Angewandte Chemie, 2018, 130, 2216-2220.                                                                                               | 2.0  | 42        |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Luminescence modulation <i>via</i> cation–i̇́€ interaction in a lanthanide assembly: implications for potassium detection. Journal of Materials Chemistry C, 2018, 6, 1944-1950.                                                                                                  | 5.5  | 30        |
| 38 | The construction of color-tunable lanthanide coordination polymer mediated by C 3-symmetrical organic ligand. Colloid and Polymer Science, 2018, 296, 53-58.                                                                                                                      | 2.1  | 3         |
| 39 | Luminescent materials of lanthanoid complexes hosted in zeolites. Chemical Communications, 2018, 54, 13884-13893.                                                                                                                                                                 | 4.1  | 46        |
| 40 | Simultaneous enhancement of mechanical strength and luminescence performance in double-network supramolecular hydrogels. Journal of Materials Chemistry C, 2018, 6, 6869-6874.                                                                                                    | 5.5  | 46        |
| 41 | Mechanical Behaviors of Highly Swollen Supramolecular Hydrogels Mediated by Pseudorotaxanes.<br>Macromolecules, 2017, 50, 1141-1146.                                                                                                                                              | 4.8  | 36        |
| 42 | Thermally Stable White Emitting Eu <sup>3+</sup> Complex@Nanozeolite@Luminescent Glass<br>Composite with High CRI for Organic-Resin-Free Warm White LEDs. ACS Applied Materials &<br>Interfaces, 2017, 9, 7272-7281.                                                              | 8.0  | 42        |
| 43 | Lanthanide(III)â€Based Multicolor Luminescent Hybrid Gel for Amine Sensing. Chemistry - an Asian<br>Journal, 2017, 12, 768-774.                                                                                                                                                   | 3.3  | 9         |
| 44 | Colorimetric sensor arrays for amines based on responsive lanthanide complex entrapment. Journal of Materials Chemistry C, 2017, 5, 6805-6811.                                                                                                                                    | 5.5  | 35        |
| 45 | Luminescent Lanthanide-Based Organic/Inorganic Hybrid Materials for Discrimination of Glutathione in Solution and within Hydrogels. ACS Applied Materials & amp; Interfaces, 2017, 9, 13554-13563.                                                                                | 8.0  | 93        |
| 46 | Luminescent hybrid composites based on the intercalation of Eu( <scp>iii</scp> ) complexes into<br>α-zirconium phosphate nanoplatelets: preparation, characterization and amine sensing. New Journal of<br>Chemistry, 2017, 41, 14103-14108.                                      | 2.8  | 4         |
| 47 | Classifying the polarity of organic solvent mixtures by using Hostalene Red adsorbed on nanosized zeolite as a fluorescent probe. Mikrochimica Acta, 2017, 184, 4663-4669.                                                                                                        | 5.0  | 4         |
| 48 | Zn2 GeO4 :Mn2+ ,Yb3+ Based Near-Infrared Down-Conversion Nanophosphors: Size-Tunable Synthesis<br>and Fabrication of Flexible, Transparent and Luminescent Thin Film. European Journal of Inorganic<br>Chemistry, 2017, 2017, 4744-4749.                                          | 2.0  | 6         |
| 49 | Largeâ€area flexible, transparent, and highly luminescent films containing lanthanide (III) complexâ€doped<br>ionic liquids for efficiency enhancement of siliconâ€based heterojunction solar cell. Progress in<br>Photovoltaics: Research and Applications, 2017, 25, 1015-1021. | 8.1  | 27        |
| 50 | Organic–Inorganic Hierarchical Selfâ€Assembly into Robust Luminescent Supramolecular Hydrogel.<br>Advanced Functional Materials, 2017, 27, 1604379.                                                                                                                               | 14.9 | 125       |
| 51 | Waterâ€Soluble Luminescent Hybrid Composites Consisting of Oligosilsesquioxanes and Lanthanide<br>Complexes and their Sensing Ability for Cu <sup>2+</sup> . Chemistry - A European Journal, 2016, 22,<br>3037-3043.                                                              | 3.3  | 82        |
| 52 | Amine vapor responsive lanthanide complex entrapment: control of the ligand-to-metal and metal-to-metal energy transfer. Journal of Materials Chemistry C, 2016, 4, 2165-2169.                                                                                                    | 5.5  | 37        |
| 53 | Emission Fingerprint Relationships of Lowâ€Level Water in Organic Solvents Based on<br>Ln <sup>3+</sup> â€Î²â€Diketonate Complexes in Laponite. Advanced Optical Materials, 2016, 4, 156-161.                                                                                     | 7.3  | 46        |
| 54 | A Redâ€Emitting Luminescent Material Capable of Detecting Low Water Content in Organic Solvents.<br>Chemistry - A European Journal, 2016, 22, 12400-12405.                                                                                                                        | 3.3  | 41        |

| #  | Article                                                                                                                                                                                                         | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 55 | Carboxyl-Functionalized Ionic Liquid Assisted Preparation of Flexible, Transparent, and Luminescent<br>Chitosan Films as Vapor Luminescent Sensor. ACS Applied Materials & Interfaces, 2016, 8,<br>19709-19715. | 8.0             | 56           |
| 56 | Synthesis and luminescence of octacarboxy cubic polyhedral oligosilsesquioxanes coordinated with terbium. CrystEngComm, 2016, 18, 177-182.                                                                      | 2.6             | 21           |
| 57 | A Ratiometric Luminescent Thermometer Coâ€doped with Lanthanide and Transition Metals. Chemistry -<br>an Asian Journal, 2015, 10, 2720-2724.                                                                    | 3.3             | 30           |
| 58 | Multi-colored luminescent light-harvesting hybrids based on aminoclay and lanthanide complexes.<br>RSC Advances, 2015, 5, 11570-11576.                                                                          | 3.6             | 25           |
| 59 | Conjugated Polythiophene for Rapid, Simple, and High-Throughput Screening of Antimicrobial<br>Photosensitizers. ACS Applied Materials & Interfaces, 2015, 7, 14569-14572.                                       | 8.0             | 29           |
| 60 | Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method.<br>RSC Advances, 2015, 5, 146-152.                                                                        | 3.6             | 47           |
| 61 | Reversible On–Off Luminescence Switching in Self-Healable Hydrogels. Langmuir, 2015, 31, 12736-12741.                                                                                                           | 3.5             | 50           |
| 62 | NaV2O5 crystals of a right-angle-shaped nanostructure assembly. CrystEngComm, 2014, 16, 11013-11017.                                                                                                            | 2.6             | 2            |
| 63 | Luminescent Hybrid Materials Based on Laponite Clay. Chemistry - A European Journal, 2014, 20,<br>10392-10396.                                                                                                  | 3.3             | 53           |
| 64 | Luminescent materials of zeolite functionalized with lanthanides. CrystEngComm, 2014, 16, 9764-9778.                                                                                                            | 2.6             | 47           |
| 65 | Luminescent Materials of Europium(III) Coordinated by a Terpyridineâ€Functionalized Poly(Ionic Liquid).<br>European Journal of Inorganic Chemistry, 2014, 2014, 469-474.                                        | 2.0             | 23           |
| 66 | Novel Luminescent Soft Materials of Terpyridine-Containing Ionic Liquids and Europium(III). ACS<br>Applied Materials & Interfaces, 2013, 5, 6268-6275.                                                          | 8.0             | 62           |
| 67 | A novel ionic liquid–metal complex electrolyte for a remarkable increase in the efficiency of dye-sensitized solar cells. Chemical Communications, 2013, 49, 6980.                                              | 4.1             | 15           |
| 68 | Ln3+-mediated formation of luminescent ionogels. Journal of Materials Chemistry C, 2013, 1, 1607.                                                                                                               | 5.5             | 36           |
| 69 | Transparent and luminescent ionogels based on lanthanide-containing ionic liquids and poly(methyl) Tj ETQq1 1 (                                                                                                 | ).784314<br>3.6 | rgBT /Overic |
| 70 | Insight into the Luminescence Behavior of Europium(III) βâ€Diketonate Complexes Encapsulated in Zeolite L<br>Crystals. ChemPlusChem, 2013, 78, 438-442.                                                         | 2.8             | 37           |
| 71 | Thermally Reversible, Flexible, Transparent, and Luminescent Ionic Organosilica Gels. European<br>Journal of Inorganic Chemistry, 2013, 2013, 2342-2349.                                                        | 2.0             | 21           |
| 72 | Preparation and luminescence of transparent zeolite L-polymer hybrid materials. Journal of Materials<br>Chemistry, 2012, 22, 4056.                                                                              | 6.7             | 28           |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Phenol Distribution Behavior in Aqueous Biphasic Systems Composed of Ionic<br>Liquids–Carbohydrate–Water. Journal of Chemical & Engineering Data, 2012, 57, 1910-1914.                                          | 1.9  | 28        |
| 74 | Formation of Cyclic Carbonates from Carbon Dioxide and Epoxides Coupling Reactions Efficiently<br>Catalyzed by Robust, Recyclable One-Component Aluminum-Salen Complexes. ACS Catalysis, 2012, 2,<br>2029-2035. | 11.2 | 185       |
| 75 | Photoluminescence properties of Eu3+-exchanged zeolite L crystals annealed at 700 °C.<br>CrystEngComm, 2012, 14, 4767.                                                                                          | 2.6  | 17        |
| 76 | Highly luminescent Eu3+-exchanged zeolite L crystals resulting from modification with silylated<br>β-diketone. Journal of Materials Chemistry, 2012, 22, 9338.                                                  | 6.7  | 29        |
| 77 | Transparent, luminescent, and highly organized monolayers of zeolite L. Journal of Materials<br>Chemistry, 2011, 21, 2709.                                                                                      | 6.7  | 44        |
| 78 | Photostable and efficient red-emitters based on zeolite L crystals. Journal of Materials Chemistry, 2011, 21, 14755.                                                                                            | 6.7  | 66        |
| 79 | Rectangular-plate like organosilica microcrystals based on silylated β-diketone and lanthanide ions.<br>CrystEngComm, 2011, 13, 177-181.                                                                        | 2.6  | 24        |
| 80 | Efficient visible and near-infrared photoluminescence from lanthanide and bismuth functionalized zeolite L. Journal of Materials Chemistry, 2011, 21, 13576.                                                    | 6.7  | 20        |
| 81 | Surface Modification and Functionalization of Microporous Hybrid Material for Luminescence<br>Sensing. Chemistry - A European Journal, 2010, 16, 2125-2130.                                                     | 3.3  | 71        |
| 82 | A transparent and luminescent ionogel based on organosilica and ionic liquid coordinating to Eu3+<br>ions. Journal of Materials Chemistry, 2010, 20, 972-975.                                                   | 6.7  | 56        |
| 83 | Construction and Photoluminescence of Monophase Hybrid Materials Derived from a Urea-Based<br>Bis-Silylated Bipyridine. European Journal of Inorganic Chemistry, 2009, 2009, 519-523.                           | 2.0  | 40        |
| 84 | Preparation and Luminescence Properties of Hybrid Titania Immobilized with Lanthanide Complexes.<br>Journal of Physical Chemistry C, 2009, 113, 3945-3949.                                                      | 3.1  | 48        |
| 85 | Green synthesis of luminescent soft materials derived from task-specific ionic liquid for solubilizing<br>lanthanide oxides and organic ligand. Journal of Materials Chemistry, 2009, 19, 5533.                 | 6.7  | 49        |
| 86 | Luminescent Triazine-Containing Bridged Polysilsesquioxanes Activated by Lanthanide Ions. European<br>Journal of Inorganic Chemistry, 2008, 2008, 4781-4785.                                                    | 2.0  | 24        |
| 87 | Europium complexes immobilization on titania via chemical modification of titanium alkoxide. Journal of Materials Chemistry, 2008, 18, 735.                                                                     | 6.7  | 50        |
| 88 | Soft material with intense photoluminescence obtained by dissolving Eu2O3 and organic ligand into a task-specific ionic liquid. Chemical Communications, 2008, , 5209.                                          | 4.1  | 71        |
| 89 | Fabrication of oriented zeolite L monolayers employing luminescent perylenediimide-bridged silsesquioxane precursor as the covalent linker. Chemical Communications, 2007, , 2853.                              | 4.1  | 28        |