Carsten O Daub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3973724/publications.pdf

Version: 2024-02-01

92 papers 14,475 citations

44 h-index

57758

92 g-index

98 all docs 98 docs citations 98 times ranked 25139 citing authors

#	Article	IF	Citations
1	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	27.8	2,269
2	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
3	An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543, 199-204.	27.8	898
4	The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 2009, 41, 563-571.	21.4	731
5	Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology, 2015, 16, 22.	8.8	687
6	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.	28.9	667
7	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	12.6	517
8	An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 2017, 35, 872-878.	17.5	456
9	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
10	Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E944-53.	7.1	332
11	Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 2009, 41, 572-578.	21.4	327
12	A comprehensive survey of $3\hat{a}\in^2$ animal miRNA modification events and a possible role for $3\hat{a}\in^2$ adenylation in modulating miRNA targeting effectiveness. Genome Research, 2010, 20, 1398-1410.	5 . 5	309
13	Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. Diabetes, 2012, 61, 1986-1993.	0.6	263
14	A predictive computational framework for direct reprogramming between human cell types. Nature Genetics, 2016, 48, 331-335.	21.4	263
15	Hidden layers of human small RNAs. BMC Genomics, 2008, 9, 157.	2.8	255
16	Estimating mutual information using B-spline functions—an improved similarity measure for analysing gene expression data. BMC Bioinformatics, 2004, 5, 118.	2.6	228
17	TagDustâ€"a program to eliminate artifacts from next generation sequencing data. Bioinformatics, 2009, 25, 2839-2840.	4.1	210
18	MiR-107 and MiR-185 Can Induce Cell Cycle Arrest in Human Non Small Cell Lung Cancer Cell Lines. PLoS ONE, 2009, 4, e6677.	2.5	200

#	Article	IF	Citations
19	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	5.3	195
20	SAMStat: monitoring biases in next generation sequencing data. Bioinformatics, 2011, 27, 130-131.	4.1	175
21	Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Research, 2011, 21, 1150-1159.	5 . 5	172
22	Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nature Biotechnology, 2014, 32, 217-219.	17.5	163
23	Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genetics, 2017, 13, e1006641.	3.5	161
24	Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods, 2010, 7, 528-534.	19.0	152
25	Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biology, 2009, 10, R79.	9.6	131
26	Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. Journal of Experimental Botany, 2005, 56, 1887-1896.	4.8	129
27	Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Research, 2009, 19, 255-265.	5.5	128
28	Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Research, 2010, 20, 257-264.	5.5	126
29	Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5289-5294.	7.1	111
30	Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Research, 2015, 43, 6787-6798.	14.5	94
31	Transcriptional features of genomic regulatory blocks. Genome Biology, 2009, 10, R38.	9.6	90
32	Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell Metabolism, 2014, 19, 981-992.	16.2	90
33	Sequence determinants of human gene regulatory elements. Nature Genetics, 2022, 54, 283-294.	21.4	87
34	Glycyrrhiza uralensis Transcriptome Landscape and Study of Phytochemicals. Plant and Cell Physiology, 2013, 54, 697-710.	3.1	80
35	The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biology, 2009, 10, R40.	9.6	73
36	Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics, 2018, 19, 181.	2.8	73

#	Article	IF	Citations
37	FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biology, 2009, 10, R39.	9.6	67
38	Optimization of turn-back primers in isothermal amplification. Nucleic Acids Research, 2011, 39, e59-e59.	14.5	66
39	MOIRAI: a compact workflow system for CAGE analysis. BMC Bioinformatics, 2014, 15, 144.	2.6	66
40	Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2479-2484.	7.1	64
41	MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics, 2003, 19, 2332-2333.	4.1	60
42	Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles. Journal of Allergy and Clinical Immunology, 2015, 136, 638-648.	2.9	59
43	Identification and transfer of spatial transcriptomics signatures for cancer diagnosis. Breast Cancer Research, 2020, 22, 6.	5.0	54
44	Promoter architecture of mouse olfactory receptor genes. Genome Research, 2012, 22, 486-497.	5.5	52
45	Ceruloplasmin Is a Novel Adipokine Which Is Overexpressed in Adipose Tissue of Obese Subjects and in Obesity-Associated Cancer Cells. PLoS ONE, 2014, 9, e80274.	2.5	50
46	Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Research, 2011, 39, D856-D860.	14.5	49
47	DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium. Cell Reports, 2015, 13, 1493-1504.	6.4	46
48	Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuMRescueLite. Bioinformatics, 2009, 25, 2613-2614.	4.1	41
49	Molecular Networks of DYX1C1 Gene Show Connection to Neuronal Migration Genes and Cytoskeletal Proteins. Biological Psychiatry, 2013, 73, 583-590.	1.3	38
50	Additive Effects of MicroRNAs and Transcription Factors on CCL2 Production in Human White Adipose Tissue. Diabetes, 2014, 63, 1248-1258.	0.6	38
51	The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity. Cell Reports, 2016, 16, 2317-2326.	6.4	35
52	The Short Non-Coding Transcriptome of the Protozoan Parasite Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2011, 5, e1283.	3.0	35
53	Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns. BMC Genomics, 2010, 11, 257.	2.8	34
54	pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex $58e^2/38e^2$ arm variation including concomitant cleavage and polyuridylation patterns. Nucleic Acids Research, 2012, 40, 1424-1437.	14.5	30

#	Article	IF	Citations
55	Regional differences in gene expression and promoter usage in aged human brains. Neurobiology of Aging, 2013, 34, 1825-1836.	3.1	30
56	Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells. Scientific Reports, 2015, 5, 11999.	3.3	30
57	Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes, 2017, 66, 218-230.	0.6	27
58	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	21.4	26
59	Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes. EBioMedicine, 2017, 24, 257-266.	6.1	24
60	Telomerase Reverse Transcriptase Regulates microRNAs. International Journal of Molecular Sciences, 2015, 16, 1192-1208.	4.1	22
61	Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response. PLoS Computational Biology, 2015, 11, e1004217.	3.2	22
62	High-throughput transcription profiling identifies putative epigenetic regulators of hematopoiesis. Blood, 2014, 123, e46-e57.	1.4	21
63	A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators. Genome Biology, 2014, 15, 413.	8.8	20
64	Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE. Nucleic Acids Research, 2010, 38, 8141-8148.	14.5	17
65	Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines. BMC Genomics, 2014, 15, 120.	2.8	17
66	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	3.2	17
67	Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State. Diabetes, 2021, 70, 1486-1497.	0.6	16
68	DeepCAGE transcriptomics identify HOXD10 as transcription factor regulating lymphatic endothelial responses to VEGF-C. Journal of Cell Science, 2016, 129, 2573-85.	2.0	15
69	Acute doses of caffeine shift nervous system cell expression profiles toward promotion of neuronal projection growth. Scientific Reports, 2017, 7, 11458.	3.3	14
70	Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli. Open Biology, 2018, 8, 180011.	3.6	13
71	Prediction of Function Divergence in Protein Families Using the Substitution Rate Variation Parameter Alpha. Molecular Biology and Evolution, 2006, 23, 1406-1413.	8.9	12
72	Long-Term Improvement in Aortic Pulse Wave Velocity After Weight Loss Can Be Predicted by White Adipose Tissue Factors. American Journal of Hypertension, 2018, 31, 450-457.	2.0	12

#	Article	IF	CITATIONS
73	Ten simple rules for annotating sequencing experiments. PLoS Computational Biology, 2020, 16, e1008260.	3.2	12
74	NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. Frontiers in Cellular Neuroscience, 2014, 8, 41.	3.7	11
75	Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis. BMC Genomics, 2019, 20, 718.	2.8	11
76	Myocardial micro-biopsy procedure for molecular characterization with increased precision and reduced trauma. Scientific Reports, 2020, 10, 8029.	3.3	11
77	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	12.8	11
78	A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells. Frontiers in Genetics, 2013, 4, 209.	2.3	10
79	Promoter Usage and Dynamics in Vascular Smooth Muscle Cells Exposed to Fibroblast Growth Factor-2 or Interleukin- $1\hat{l}^2$. Scientific Reports, 2018, 8, 13164.	3.3	10
80	A putative silencer variant in a spontaneous canine model of retinitis pigmentosa. PLoS Genetics, 2020, 16, e1008659.	3.5	9
81	NGSView: an extensible open source editor for next-generation sequencing data. Bioinformatics, 2010, 26, 125-126.	4.1	8
82	*-DCC: A platform to collect, annotate, and explore a large variety of sequencing experiments. GigaScience, 2020, 9, .	6.4	7
83	Measuring Distances Between Variables by Mutual Information. , 2005, , 81-90.		6
84	Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection. Cerebellum, 2018, 17, 308-325.	2.5	6
85	Generation of RNA sequencing libraries for transcriptome analysis of globin-rich tissues of the domestic dog. STAR Protocols, 2021, 2, 100995.	1.2	6
86	Employing conservation of co-expression to improve functional inference. BMC Systems Biology, 2008, 2, 81.	3.0	5
87	SDRF2GRAPH – a visualization tool of a spreadsheet-based description of experimental processes. BMC Bioinformatics, 2009, 10, 133.	2.6	3
88	Profiling transcription initiation in human aged brain using deep-CAGE. BMC Bioinformatics, 2011, 12, .	2.6	3
89	System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions. Scientific Reports, 2015, 5, 8283.	3.3	3
90	Application of Gene Expression Trajectories Initiated from ErbB Receptor Activation Highlights the Dynamics of Divergent Promoter Usage. PLoS ONE, 2015, 10, e0144176.	2.5	1

#	Article	IF	CITATIONS
91	Micro-biopsy for detection of gene expression changes in ischemic swine myocardium: A pilot study. PLoS ONE, 2021, 16, e0250582.	2.5	1
92	Beyond the FANTOM4. Genome Biology, 2010, 11, O11.	9.6	0