
Guizheng Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3973490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ternary-Host and Heterojunction Enabled Eye-Visible Elastic Mechanoluminescence from (Ca _{0.5} Sr _{0.5})ZnOS/ <i>x</i> ZnS/Mn ²⁺ . Journal of Physical Chemistry C, 2022, 126, 1523-1530.	3.1	4
2	Sensitive, Signal-Modulation Strategy for Discrimination of ECL Spectra and Investigation of Mutual Interactions of Emitters. Analytical Chemistry, 2022, 94, 3637-3644.	6.5	10
3	Selectively Lighting Up Singlet Oxygen via Aggregation-Induced Electrochemiluminescence Energy Transfer. Analytical Chemistry, 2022, 94, 3718-3726.	6.5	11
4	Coreactant-Free and Direct Electrochemiluminescence from Dual-Stabilizer-Capped InP/ZnS Nanocrystals: A New Route Involving n-Type Luminophore. Analytical Chemistry, 2022, 94, 1350-1356.	6.5	23
5	Glow and Flash Adjustable Chemiluminescence with Tunable Waveband from the Same CuInS ₂ @ZnS Nanocrystal Luminophore. Analytical Chemistry, 2022, 94, 6902-6908.	6.5	4
6	A General Route for Chemiluminescence of n-Type Au Nanocrystals. Analytical Chemistry, 2022, 94, 8811-8817.	6.5	12
7	Electrochemiluminescence ultrasensitive immunoassay for carbohydrate antigen 125 based on AgInS2/ZnS nanocrystals. Analytical and Bioanalytical Chemistry, 2021, 413, 2207-2215.	3.7	9
8	Use of Triangular Silver Nanoplates as Low Potential Redox Mediators for Electrochemical Sensing. Analytical Chemistry, 2021, 93, 3295-3300.	6.5	12
9	Bovine serum albumin-stabilized silver nanoclusters with anodic electrochemiluminescence peak at 904Ânm in aqueous medium and applications in spectrum-resolved multiplexing immunoassay. Biosensors and Bioelectronics, 2021, 176, 112934.	10.1	32
10	Surface-Defect-Induced and Synergetic-Effect-Enhanced NIR-II Electrochemiluminescence of Au–Ag Bimetallic Nanoclusters and Its Spectral Sensing. Analytical Chemistry, 2021, 93, 4909-4915.	6.5	45
11	Highly potential-resolved anodic electrochemiluminescence multiplexing immunoassay with CuInS2@ZnS nanocrystals and [Ru(bpy)2(dcbpy)]2+ as emitters. Journal of Electroanalytical Chemistry, 2021, 888, 115173.	3.8	6
12	Hydrazine Hydrate and Dissolved Oxygen-Triggered Near-Infrared Chemiluminescence from CuInS ₂ @ZnS Nanocrystals for Bioassays. Analytical Chemistry, 2021, 93, 8931-8936.	6.5	10
13	Low-Triggering-Potential Electrochemiluminescence from Surface-Confined CuInS ₂ @ZnS Nanocrystals and their Biosensing Applications. Analytical Chemistry, 2021, 93, 12250-12256.	6.5	12
14	Enhanced Near-Infrared Electrochemiluminescence from Trinary Ag–In–S to Multinary Ag–Ga–In–S Nanocrystals via Doping-in-Growth and Its Immunosensing Applications. Analytical Chemistry, 2021, 93, 2160-2165.	6.5	30
15	Surface-Engineering Enhanced Charge Injection and Recombination of Silver Nanoclusters in an Aqueous Medium. Journal of Physical Chemistry C, 2021, 125, 22078-22083.	3.1	7
16	Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region. Biosensors and Bioelectronics, 2020, 150, 111880.	10.1	36
17	Exonuclease III-assisted positive feedback signal amplification strategy for ultrasensitive electrochemical detection of nucleic acids. Sensors and Actuators B: Chemical, 2020, 304, 127410.	7.8	13
18	Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochimica Acta, 2020, 330, 135332.	5.2	15

#	Article	IF	CITATIONS
19	Efficient electronic coupling and heterogeneous charge transport of zero-dimensional Cs ₄ PbBr ₆ perovskite emitters. Journal of Materials Chemistry A, 2020, 8, 23803-23811.	10.3	21
20	Ce4+ doping to modulate electrochemical and radiative-charge-transfer behaviors of CsPbBr3 perovskite nanocrystals. Journal of Electroanalytical Chemistry, 2020, 876, 114546.	3.8	5
21	Thermally Activated Delayed Phosphorescence and Interchromophore Exciton Coupling in a Platinumâ€Based Organometallic Emitter. Advanced Optical Materials, 2020, 8, 2001023.	7.3	14
22	Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochimica Acta, 2020, 360, 136992.	5.2	19
23	Near-Infrared Electrochemiluminescence Immunoassay with Biocompatible Au Nanoclusters as Tags. Analytical Chemistry, 2020, 92, 7581-7587.	6.5	82
24	Electrochemically Lighting Up Luminophores at Similar Low Triggering Potentials with Mechanistic Insights. Analytical Chemistry, 2020, 92, 6144-6149.	6.5	28
25	Enhanced aqueous stability and radiative-charge-transfer of CsPbBr3/Ag2S perovskite nanocrystal hybrids. Journal of Electroanalytical Chemistry, 2020, 858, 113835.	3.8	12
26	A high sensitive single luminophore ratiometric electrochemiluminescence immunosensor in combined with anodic stripping voltammetry. Electrochimica Acta, 2020, 336, 135725.	5.2	16
27	Tunable electrochemiluminescence properties of CsPbBr3perovskite nanocrystals using mixed-monovalent cations. New Journal of Chemistry, 2020, 44, 3323-3329.	2.8	4
28	Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy, 2020, 73, 104752.	16.0	58
29	Mechanistic investigations into synergistically enhanced radiative-charge-transfer in Au–Ag bimetallic nanoclusters. Chemical Communications, 2020, 56, 5665-5668.	4.1	17
30	Promising Electrochemiluminescence from CuInS ₂ /ZnS Nanocrystals/Hydrazine via Internal Cu(I)/Cu(II) Couple Cycling. Analytical Chemistry, 2019, 91, 10221-10226.	6.5	26
31	Promising Mercaptobenzoic Acid-Bridged Charge Transfer for Electrochemiluminescence from CuInS2@ZnS Nanocrystals via Internal Cu+/Cu2+ Couple Cycling. Journal of Physical Chemistry Letters, 2019, 10, 5408-5413.	4.6	22
32	Efficient and Monochromatic Electrochemiluminescence of Aqueousâ€ 5 oluble Au Nanoclusters via Host–Guest Recognition. Angewandte Chemie, 2019, 131, 6975-6979.	2.0	19
33	Efficient and Monochromatic Electrochemiluminescence of Aqueousâ€ S oluble Au Nanoclusters via Host–Guest Recognition. Angewandte Chemie - International Edition, 2019, 58, 6901-6905.	13.8	112
34	Ultrasensitive Electrochemiluminescent Sensor for MicroRNA with Multinary Zn–Ag–In–S/ZnS Nanocrystals as Tags. Analytical Chemistry, 2019, 91, 3754-3758.	6.5	39
35	Enhanced Charge Injection and Recombination of CsPbBr3 Perovskite Nanocrystals upon Internal Heterovalent Substitution. Journal of Physical Chemistry C, 2019, 123, 29916-29921.	3.1	4
36	Adjustable Electrochemiluminescence from Highly Passivated CdTe/CdS Nanocrystals by Simple Surface Decoration with Counterions. Chemistry - A European Journal, 2018, 24, 9592-9597.	3.3	20

#	Article	IF	CITATIONS
37	Dichroic Mirror-Assisted Electrochemiluminescent Assay for Simultaneously Detecting Wild-type and Mutant p53 with Photomultiplier Tubes. Analytical Chemistry, 2018, 90, 5474-5480.	6.5	31
38	Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS ₂ /ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Analytical Chemistry, 2018, 90, 3563-3569.	6.5	63
39	Composite of CH ₃ NH ₃ PbI ₃ with Reduced Graphene Oxide as a Highly Efficient and Stable Visibleâ€Light Photocatalyst for Hydrogen Evolution in Aqueous HI Solution. Advanced Materials, 2018, 30, 1704342.	21.0	302
40	Dual-wavebands-resolved electrochemiluminescence multiplexing immunoassay with dichroic mirror assistant photomultiplier-tubes as detectors. Biosensors and Bioelectronics, 2018, 115, 77-82.	10.1	27
41	Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence. Journal of Physical Chemistry Letters, 2018, 9, 6089-6095.	4.6	16
42	Electrochemical-Signal-Amplification Strategy for an Electrochemiluminescence Immunoassay with g-C ₃ N ₄ as Tags. Analytical Chemistry, 2018, 90, 12930-12936.	6.5	75
43	Spectrum-Resolved Triplex-Color Electrochemiluminescence Multiplexing Immunoassay with Highly-Passivated Nanocrystals as Tags. Analytical Chemistry, 2018, 90, 12361-12365.	6.5	57
44	Spectrumâ€Based Electrochemiluminescence Immunoassay for Selectively Determining CA125 in Greenish Waveband. ChemElectroChem, 2017, 4, 1714-1718.	3.4	17
45	Electrochemistry and Electrochemiluminescence of Organometal Halide Perovskite Nanocrystals in Aqueous Medium. Journal of the American Chemical Society, 2017, 139, 8772-8776.	13.7	185
46	Spectrum-based and color-selective electrochemiluminescence immunoassay for determining human prostate specific antigen in near-infrared region. Talanta, 2017, 165, 117-121.	5.5	22
47	Hydrogen Peroxide Involved Anodic Charge Transfer and Electrochemiluminescence of All-Inorganic Halide Perovskite CsPbBr ₃ Nanocrystals in an Aqueous Medium. Inorganic Chemistry, 2017, 56, 10135-10138.	4.0	34
48	Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films. Analytical Chemistry, 2017, 89, 8212-8216.	6.5	59
49	Near-infrared electrochemiluminescence from non-toxic CulnS ₂ nanocrystals. Journal of Materials Chemistry C, 2017, 5, 12393-12399.	5.5	33
50	Potential-Resolved Multicolor Electrochemiluminescence of <i>N</i> -(4-Aminobutyl)- <i>N</i> -ethylisoluminol/tetra(4-carboxyphenyl)porphyrin/TiO ₂ Nanoluminophores. Analytical Chemistry, 2017, 89, 12636-12640.	6.5	55
51	Spectrum-Resolved Dual-Color Electrochemiluminescence Immunoassay for Simultaneous Detection of Two Targets with Nanocrystals as Tags. Analytical Chemistry, 2017, 89, 13024-13029.	6.5	84
52	Ultrasensitive electrochemical immunosensor for quantitative detection of tumor specific growth factor by using Ag@CeO2 nanocomposite as labels. Talanta, 2016, 156-157, 11-17.	5.5	30
53	Molecular-Counting-Free and Electrochemiluminescent Single-Molecule Immunoassay with Dual-Stabilizers-Capped CdSe Nanocrystals as Labels. Analytical Chemistry, 2016, 88, 5482-5488.	6.5	80
54	Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr ₃ nanocrystals. Nanoscale, 2016, 8, 18734-18739.	5.6	58

#	Article	IF	CITATIONS
55	Spectrum-Based Electrochemiluminescent Immunoassay with Ternary CdZnSe Nanocrystals as Labels. Analytical Chemistry, 2016, 88, 6947-6953.	6.5	72
56	Electrochemiluminescence Tuned by Electron–Hole Recombination from Symmetry-Breaking in Wurtzite ZnSe. Journal of the American Chemical Society, 2016, 138, 1154-1157.	13.7	96
57	Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite. Talanta, 2016, 154, 175-182.	5.5	21
58	Bandgap engineered and high monochromatic electrochemiluminescence from dual-stabilizers-capped CdSe nanocrystals with practical application potential. Biosensors and Bioelectronics, 2014, 55, 203-208.	10.1	44
59	A Monochromatic Electrochemiluminescence Sensing Strategy for Dopamine with Dual-Stabilizers-Capped CdSe Quantum Dots as Emitters. Analytical Chemistry, 2014, 86, 2784-2788.	6.5	121
60	Ultrasensitive Immunoassay Based on Anodic Near-Infrared Electrochemiluminescence from Dual-Stabilizer-Capped CdTe Nanocrystals. Analytical Chemistry, 2012, 84, 10645-10649.	6.5	96
61	Heterogeneous electrochemiluminescence spectrometry of Ru(bpy)32+ for determination of trace DNA and its application in measurement of gene expression level. Talanta, 2012, 89, 427-432.	5.5	13
62	Nanocomposite of electrochemically reduced graphene oxide and gold nanoparticles enhanced electrochemilunescence of peroxydisulfate and its immunosensing abililty towards human IgG. Journal of Electroanalytical Chemistry, 2012, 686, 25-31.	3.8	25
63	Electrogenerated chemiluminescence sensor for formaldehyde based on Ru(bpy)32+-doped silica nanoparticles modified Au electrode. Materials Science and Engineering C, 2012, 32, 2169-2174.	7.3	14
64	Electrochemiluminescence resonance energy transfer between an emitter electrochemically generated by luminol as the donor and luminescent quantum dots as the acceptor and its biological application. Chemical Communications, 2011, 47, 8292.	4.1	51
65	Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials. Chemical Communications, 2011, 47, 10115.	4.1	45
66	Ultrasensitive electrochemiluminescence method for determination of DNA using Ru(bpy)32+-coated magnetic submicrobeads wrapped with carbon nanotubes. Electrochemistry Communications, 2011, 13, 1499-1501.	4.7	9
67	Oneâ€Pot Synthesis of Dualâ€Stabilizerâ€Capped CdTe Nanocrystals with Efficient Nearâ€Infrared Photoluminescence and Electrochemiluminescence. European Journal of Inorganic Chemistry, 2011, 2011, 3726-3730.	2.0	29
68	Electrochemiluminescence DNA Sensor Based on Hairpin Structure DNA as recognition element and Ru(bpy) ₃ ²⁺ â€doped silica Nanoparticles as Signalâ€Producing Compound. Electroanalysis, 2011, 23, 2693-2698.	2.9	12
69	Efficient Nearâ€Infrared Electrochemiluminescence from CdTe Nanocrystals with Low Triggering Potential and Ultrasensitive Sensing Ability. Chemistry - A European Journal, 2011, 17, 10213-10215.	3.3	37
70	Ultrasensitive Eletrogenerated Chemiluminescence Immunoassay by Magnetic Nanobead Amplification. Electroanalysis, 2010, 22, 333-337.	2.9	24
71	Electrochemistry of thiol-capped CdTe quantum dots and its sensing application. Journal of Electroanalytical Chemistry, 2009, 625, 88-91.	3.8	29
72	Ultrasensitive electrochemical immunoassay based on counting single magnetic nanobead by a combination of nanobead amplification and enzyme amplification. Electrochemistry Communications, 2009, 11, 1457-1459.	4.7	6

#	Article	IF	CITATIONS
73	Highly conjugated water soluble CdSe quantum dots to multiwalled carbon nanotubes. Chinese Chemical Letters, 2009, 20, 356-357.	9.0	4
74	Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification. Analytical Chemistry, 2009, 81, 1826-1832.	6.5	43
75	Quantitative Counting of Single Fluorescent Molecules by Combined Electrochemical Adsorption Accumulation and Total Internal Reflection Fluorescence Microscopy. Analytical Chemistry, 2008, 80, 3999-4006.	6.5	37
76	Electrogenerated chemiluminescence of CdSe hollow spherical assemblies in aqueous system by immobilization in carbon paste. Journal of Electroanalytical Chemistry, 2005, 579, 175-180.	3.8	35
77	Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. Journal of Electroanalytical Chemistry, 2004, 566, 305-313.	3.8	56
78	Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution. Analytical Chemistry, 2004, 76, 6871-6876.	6.5	312
79	Electrochemiluminescence of Luminol in Alkaline Solution at a Paraffin-Impregnated Graphite Electrode. Analytical Chemistry, 2003, 75, 324-331.	6.5	177