Yuan-Sen Ting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The GALAH+ survey: Third data release. Monthly Notices of the Royal Astronomical Society, 2021, 506, 150-201.	4.4	293
2	The GALAH Survey: second data release. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4513-4552.	4.4	269
3	Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure. Astrophysical Journal, 2020, 901, 48.	4.5	204
4	The GALAH survey and Gaia DR2: dissecting the stellar disc's phase space by age, action, chemistry, and location. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1167-1191.	4.4	145
5	Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra. Astrophysical Journal, Supplement Series, 2019, 245, 34.	7.7	130
6	The Payne: Self-consistent ab initio Fitting of Stellar Spectra. Astrophysical Journal, 2019, 879, 69.	4.5	129
7	Measuring Radial Orbit Migration in the Galactic Disk. Astrophysical Journal, 2018, 865, 96.	4.5	106
8	Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra. Monthly Notices of the Royal Astronomical Society, 2018, 476, 528-553.	4.4	82
9	Timing the Early Assembly of the Milky Way with the H3 Survey. Astrophysical Journal Letters, 2020, 897, L18.	8.3	77
10	Reconstructing the Last Major Merger of the Milky Way with the H3 Survey. Astrophysical Journal, 2021, 923, 92.	4.5	76
11	The Inside-out Growth of the Galactic Disk. Astrophysical Journal, 2019, 884, 99.	4.5	65
12	Signatures of unresolved binaries in stellar spectra: implications for spectral fitting. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5043-5049.	4.4	59
13	Metallicity fluctuation statistics in the interstellar medium and young stars – I. Variance and correlation. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2236-2252.	4.4	59
14	The GALAH survey and Gaia DR2: Linking ridges, arches, and vertical waves in the kinematics of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4962-4979.	4.4	58
15	Molecular and atomic gas in dust lane early-type galaxies – I. Low star formation efficiencies in minor merger remnants. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3503-3516.	4.4	56
16	Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances. Astrophysical Journal, 2017, 841, 40.	4.5	55
17	The K2-HERMES Survey: age and metallicity of the thick disc. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5335-5352.	4.4	54
18	A new approach to observational cosmology using the scattering transform. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5902-5914.	4.4	54

#	Article	IF	CITATIONS
19	PROSPECTS FOR CHEMICALLY TAGGING STARS IN THE GALAXY. Astrophysical Journal, 2015, 807, 104.	4.5	53
20	Galaxy Zoo: dust and molecular gas in early-type galaxies with prominent dust lanes☠Monthly Notices of the Royal Astronomical Society, 2012, 423, 49-58.	4.4	52
21	A Large and Pristine Sample of Standard Candles across the Milky Way: â^1⁄4100,000 Red Clump Stars with 3% Contamination. Astrophysical Journal Letters, 2018, 858, L7.	8.3	52
22	Keeping It Cool: Much Orbit Migration, yet Little Heating, in the Galactic Disk. Astrophysical Journal, 2020, 896, 15.	4.5	52
23	Orbital Clustering Identifies the Origins of Galactic Stellar Streams. Astrophysical Journal Letters, 2021, 909, L26.	8.3	51
24	The Vertical Motion History of Disk Stars throughout the Galaxy. Astrophysical Journal, 2019, 878, 21.	4.5	50
25	Identical or fraternal twins? The chemical homogeneity of wide binaries from <i>Gaia</i> DR2. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1164-1179.	4.4	49
26	The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information. Astrophysical Journal, Supplement Series, 2017, 228, 24.	7.7	48
27	The GALAH survey: chemodynamics of the solar neighbourhood. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2952-2964.	4.4	46
28	The GALAH survey: effective temperature calibration from the InfraRed Flux Method in the <i>Gaia</i> system. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2684-2696.	4.4	46
29	The Relationship between Globular Cluster Mass, Metallicity, and Light-element Abundance Variations. Astronomical Journal, 2019, 158, 14.	4.7	45
30	Galaxy Zoo: dust lane early-type galaxies are tracers of recent, gas-rich minor mergersâ~ Monthly Notices of the Royal Astronomical Society, 2012, 423, 59-67.	4.4	44
31	Non-LTE chemical abundances in Galactic open and globular clusters. Astronomy and Astrophysics, 2019, 628, A54.	5.1	44
32	The GALAH Survey: chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and <i>Gaia</i> eDR3. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2407-2436.	4.4	44
33	Measuring 14 Elemental Abundances with RÂ=Â1800 LAMOST Spectra. Astrophysical Journal Letters, 2017, 849, L9.	8.3	41
34	The GALAH survey: verifying abundance trends in the open cluster M67 using non-LTE modelling. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2666-2684.	4.4	41
35	Discovery of ubiquitous lithium production in low-mass stars. Nature Astronomy, 2020, 4, 1059-1063.	10.1	40
36	The eccentricity distribution of wide binaries and their individual measurements. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3383-3399.	4.4	36

#	Article	IF	CITATIONS
37	The GALAH survey: chemical tagging of star clusters and new members in the Pleiades. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4612-4633.	4.4	35
38	Fundamental relations for the velocity dispersion of stars in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1761-1776.	4.4	35
39	Evidence from Disrupted Halo Dwarfs that r-process Enrichment via Neutron Star Mergers is Delayed by ≳500 Myr. Astrophysical Journal Letters, 2022, 926, L36.	8.3	33
40	Prospects for Measuring Abundances of >20 Elements with Low-resolution Stellar Spectra. Astrophysical Journal, 2017, 843, 32.	4.5	32
41	MINESweeper: Spectrophotometric Modeling of Stars in the Gaia Era. Astrophysical Journal, 2020, 900, 28.	4.5	32
42	APOGEE CHEMICAL TAGGING CONSTRAINT ON THE MAXIMUM STAR CLUSTER MASS IN THE α-ENHANCED GALACTIC DISK. Astrophysical Journal, 2016, 816, 10.	4.5	29
43	An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers. Monthly Notices of the Royal Astronomical Society, 2018, 476, 122-132.	4.4	28
44	The GALAH survey: stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity. Monthly Notices of the Royal Astronomical Society, 2018, 478, 228-254.	4.4	28
45	Stars that Move Together Were Born Together. Astrophysical Journal Letters, 2019, 884, L42.	8.3	27
46	591 High-velocity Stars in the Galactic Halo Selected from LAMOST DR7 and Gaia DR2. Astrophysical Journal, Supplement Series, 2021, 252, 3.	7.7	26
47	The GALAH survey and Gaia DR2: (non-)existence of five sparse high-latitude open clusters. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5242-5259.	4.4	25
48	Milky Way Tomography with the SkyMapper Southern Survey. II. Photometric Recalibration of SMSS DR2. Astrophysical Journal, 2021, 907, 68.	4.5	25
49	High-resolution elemental abundance analysis of the open cluster IC 4756. Monthly Notices of the Royal Astronomical Society, 2012, 427, 882-892.	4.4	24
50	CONSTRUCTING POLYNOMIAL SPECTRAL MODELS FOR STARS. Astrophysical Journal Letters, 2016, 826, L25.	8.3	24
51	Photospheric Diagnostics of Core Helium Burning in Giant Stars. Astrophysical Journal, 2018, 853, 20.	4.5	24
52	The GALAH survey: accurate radial velocities and library of observed stellar template spectra. Monthly Notices of the Royal Astronomical Society, 2018, 481, 645-654.	4.4	24
53	On the Red Giant Branch: Ambiguity in the Surface Boundary Condition Leads to â‰^100 K Uncertainty in Model Effective Temperatures. Astrophysical Journal, 2018, 860, 131.	4.5	23
54	The GALAH survey: A census of lithium-rich giant stars. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	22

#	Article	IF	CITATIONS
55	ACCELERATED FITTING OF STELLAR SPECTRA. Astrophysical Journal, 2016, 826, 83.	4.5	21
56	The GALAH survey: temporal chemical enrichment of the galactic disc. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2043-2056.	4.4	21
57	A Diffuse Metal-poor Component of the Sagittarius Stream Revealed by the H3 Survey. Astrophysical Journal, 2020, 900, 103.	4.5	21
58	Constraining the Galactic potential via action-based distribution functions for mono-abundance stellar populations. Monthly Notices of the Royal Astronomical Society, 2013, 434, 652-660.	4.4	20
59	Stellar ages and masses in the solar neighbourhood: Bayesian analysis using spectroscopy and Gaia DR1 parallaxes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2966-2975.	4.4	20
60	The GALAH survey: a new constraint on cosmological lithium and Galactic lithium evolution from warm dwarf stars. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 497, L30-L34.	3.3	20
61	The non-monotonic, strong metallicity dependence of the wide-binary fraction. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4329-4343.	4.4	20
62	Measuring Oxygen Abundances from Stellar Spectra without Oxygen Lines. Astrophysical Journal, 2018, 860, 159.	4.5	18
63	A Dynamical Model for Clustered Star Formation in the Galactic Disk. Astrophysical Journal, 2019, 884, 173.	4.5	17
64	Distant Relatives: The Chemical Homogeneity of Comoving Pairs Identified in Gaia. Astrophysical Journal, 2021, 921, 118.	4.5	16
65	Most "Young―α-rich Stars Have High Masses but are Actually Old. Astrophysical Journal, 2021, 922, 145.	4.5	16
66	How Many Elements Matter?. Astrophysical Journal, 2022, 927, 209.	4.5	16
67	The GALAH Survey: Chemically tagging the Fimbulthul stream to the globular cluster ω Centauri. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3374-3384.	4.4	15
68	Data-driven Spectroscopic Estimates of Absolute Magnitude, Distance, and Binarity: Method and Catalog of 16,002 O- and B-type Stars from LAMOST. Astrophysical Journal, Supplement Series, 2021, 253, 22.	7.7	15
69	Chemical Cartography with APOGEE: Mapping Disk Populations with a 2-process Model and Residual Abundances. Astrophysical Journal, Supplement Series, 2022, 260, 32.	7.7	15
70	Cycle-StarNet: Bridging the Gap between Theory and Data by Leveraging Large Data Sets. Astrophysical Journal, 2021, 906, 130.	4.5	14
71	All-sky visible and near infrared space astrometry. Experimental Astronomy, 2021, 51, 783-843.	3.7	13
72	Detailed elemental abundances of binary stars: searching for signatures of planet formation and atomic diffusion. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1227-1240.	4.4	13

#	Article	IF	CITATIONS
73	Chemically Peculiar A and F Stars with Enhanced s-process and Iron-peak Elements: Stellar Radiative Acceleration at Work. Astrophysical Journal, 2020, 898, 28.	4.5	13
74	Star Cluster Ages in the Gaia Era. Astrophysical Journal, 2018, 863, 65.	4.5	12
75	The GALAH survey: co-orbiting stars and chemical tagging. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5302-5315.	4.4	12
76	Forecasting Chemical Abundance Precision for Extragalactic Stellar Archaeology. Astrophysical Journal, Supplement Series, 2020, 249, 24.	7.7	12
77	Wide Twin Binaries are Extremely Eccentric: Evidence of Twin Binary Formation in Circumbinary Disks. Astrophysical Journal Letters, 2022, 933, L32.	8.3	12
78	Ancient Very Metal-poor Stars Associated with the Galactic Disk in the H3 Survey. Astrophysical Journal, 2021, 908, 208.	4.5	11
79	The GALAH survey: Chemical homogeneity of the Orion complex. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4232-4250.	4.4	11
80	The GALAH survey: accreted stars also inhabit the Spite plateau. Monthly Notices of the Royal Astronomical Society, 2021, 507, 43-54.	4.4	11
81	A Search for Wandering Black Holes in the Milky Way with Gaia and DECaLS. Astrophysical Journal, 2021, 917, 17.	4.5	11
82	Holistic spectroscopy: complete reconstruction of a wide-field, multiobject spectroscopic image using a photonic comb. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5475-5494.	4.4	10
83	Discovery of Magellanic Stellar Debris in the H3 Survey. Astrophysical Journal Letters, 2020, 905, L3.	8.3	10
84	Exploring the cosmic 21-cm signal from the epoch of reionization using the wavelet scattering transform. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1719-1741.	4.4	10
85	The GALAH Survey: using galactic archaeology to refine our knowledge of <i>TESS</i> target stars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4968-4989.	4.4	9
86	From the inner to outer Milky Way: a photometric sample of 2.6 million red clump stars. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3087-3103.	4.4	9
87	The GALAH Survey: No Chemical Evidence of an Extragalactic Origin for the Nyx Stream. Astrophysical Journal Letters, 2021, 912, L30.	8.3	7
88	The GALAH+ Survey: A new library of observed stellar spectra improves radial velocities and hints at motions within M67. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	7
89	The GALAH survey: characterization of emission-line stars with spectral modelling using autoencoders. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4849-4865.	4.4	7
90	The GALAH survey: a catalogue of carbon-enhanced stars and CEMP candidates. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3196-3212.	4.4	6

#	Article	IF	CITATIONS
91	The GALAH survey: velocity fluctuations in the Milky Way using Red Clump giants. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4215-4232.	4.4	6
92	Zeta-Payne: A Fully Automated Spectrum Analysis Algorithm for the Milky Way Mapper Program of the SDSS-V Survey. Astronomical Journal, 2022, 163, 236.	4.7	6
93	Wide binaries from the H3 survey: the thick disc and halo have similar wide binary fractions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 754-767.	4.4	5
94	The GALAH Survey: A New Sample of Extremely Metal-poor Stars Using a Machine-learning Classification Algorithm. Astrophysical Journal, 2022, 930, 47.	4.5	5
95	The GALAH survey: unresolved triple Sun-like stars discovered by the Gaia mission. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2474-2490.	4.4	4
96	A Mystery in Chamaeleon: Serendipitous Discovery of a Galactic Symbiotic Nova. Astronomical Journal, 2020, 160, 125.	4.7	4
97	Spatial and Kinematic Clustering of Stars in the Galactic Disk. Astrophysical Journal, 2021, 922, 49.	4.5	4
98	Li-rich Giants in LAMOST Survey. III. The Statistical Analysis of Li-rich Giants. Astrophysical Journal, 2022, 931, 136.	4.5	4
99	Reliable stellar abundances of individual stars with the MUSE integral-field spectrograph. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1034-1053.	4.4	2
100	Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope. Monthly Notices of the Royal Astronomical Society, 2021, 510, 870-902.	4.4	1
101	Erratum "Milky Way Tomography with the SkyMapper Southern Survey. II. Photometric Recalibration of SMSS DR2―(2021, ApJ, 907, 68). Astrophysical Journal, 2022, 924, 141.	4.5	1
102	The predicted properties of helium-enriched globular cluster progenitors at high redshift. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3222-3234.	4.4	0