Glen L Hartman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3972861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security, 2011, 3, 5-17.	2.4	419
2	Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens. Journal of Virology, 2016, 90, 6846-6863.	1.5	252
3	Discovery of Soybean Aphid Biotypes. Crop Science, 2008, 48, 923-928.	0.8	201
4	A Single Dominant Gene for Resistance to the Soybean Aphid in the Soybean Cultivar Dowling. Crop Science, 2006, 46, 1601-1605.	0.8	186
5	No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nature Ecology and Evolution, 2020, 4, 1368-1376.	3.4	147
6	Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiology and Biochemistry, 2004, 42, 671-679.	2.8	144
7	A New Soybean Aphid (Hemiptera: Aphididae) Biotype Identified. Journal of Economic Entomology, 2010, 103, 509-515.	0.8	144
8	Breeding for Resistance to Soybean Rust. Plant Disease, 2005, 89, 664-666.	0.7	143
9	Map Location of the <i>Rpp1</i> Locus That Confers Resistance to Soybean Rust in Soybean. Crop Science, 2007, 47, 837-838.	0.8	132
10	Evaluation of Virulence of Phakopsora pachyrhizi and P. meibomiae Isolates. Plant Disease, 2006, 90, 708-716.	0.7	126
11	Effect of Three Resistant Soybean Genotypes on the Fecundity, Mortality, and Maturation of Soybean Aphid (Homoptera: Aphididae). Journal of Economic Entomology, 2004, 97, 1106-1111.	0.8	125
12	Soybean defense responses to the soybean aphid. New Phytologist, 2008, 179, 185-195.	3.5	121
13	Soybean Aphid Resistance in Soybean Jackson Is Controlled by a Single Dominant Gene. Crop Science, 2006, 46, 1606-1608.	0.8	119
14	Efficacy of Fungicides on Sclerotinia sclerotiorum and Their Potential for Control of Sclerotinia Stem Rot on Soybean. Plant Disease, 2002, 86, 26-31.	0.7	109
15	Soybean Rust Development and the Quantitative Relationship Between Rust Severity and Soybean Yield. Plant Disease, 1991, 75, 596.	0.7	109
16	Germplasm Evaluation of Glycine max for Resistance to Fusarium solani, the Causal Organism of Sudden Death Syndrome. Plant Disease, 1997, 81, 515-518.	0.7	107
17	Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity. Frontiers in Microbiology, 2017, 8, 519.	1.5	101
18	Detection and Quantification of Fusarium solani f. sp. glycines in Soybean Roots with Real-Time Quantitative Polymerase Chain Reaction. Plant Disease, 2004, 88, 1372-1380.	0.7	95

#	Article	IF	CITATIONS
19	Characterization of Disease Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. Phytopathology, 2016, 106, 1139-1151.	1.1	91
20	Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta, 2007, 225, 665-679.	1.6	89
21	Resistance to the Soybean Aphid in Soybean Germplasm. Crop Science, 2004, 44, 98.	0.8	89
22	Molecular Detection of Diaporthe phaseolorum and Phomopsis longicolla from Soybean Seeds. Phytopathology, 1999, 89, 796-804.	1.1	88
23	Mycelial Compatibility Grouping and Aggressiveness of Sclerotinia sclerotiorum. Plant Disease, 2004, 88, 325-332.	0.7	88
24	Molecular Identification and Phylogenetic Grouping of Diaporthe phaseolorum and Phomopsis longicolla Isolates from Soybean. Phytopathology, 1998, 88, 1306-1314.	1.1	87
25	Fine mapping the soybean aphid resistance gene Rag1 in soybean. Theoretical and Applied Genetics, 2010, 120, 1063-1071.	1.8	87
26	Transfection of Sclerotinia sclerotiorum with <i>In Vitro</i> Transcripts of a Naturally Occurring Interspecific Recombinant of Sclerotinia sclerotiorum Hypovirus 2 Significantly Reduces Virulence of the Fungus. Journal of Virology, 2015, 89, 5060-5071.	1.5	84
27	Resistance and virulence in the soybean-Aphis glycines interaction. Euphytica, 2012, 186, 635-646.	0.6	83
28	Occurrence and Distribution of <i>Aphis glycines</i> on Soybeans in Illinois in 2000 and Its Potential Control. Plant Health Progress, 2001, 2, .	0.8	82
29	Mapping and Confirmation of a New Allele at <i>Rpp1</i> from Soybean PI 594538A Conferring RB Lesion–Type Resistance to Soybean Rust. Crop Science, 2009, 49, 783-790.	0.8	82
30	Using PCR to Distinguish Diaporthe phaseolorum and Phomopsis longicolla from Other Soybean Fungal Pathogens and to Detect Them in Soybean Tissues. Plant Disease, 1997, 81, 1143-1149.	0.7	79
31	International Fungicide Efficacy Trials for the Management of Soybean Rust. Plant Disease, 2007, 91, 1450-1458.	0.7	79
32	Differential Responses of Resistant Soybean Entries to Isolates of <i>Phakopsora pachyrhizi</i> . Plant Disease, 2009, 93, 224-228.	0.7	77
33	Evaluation of Resistance Screening Methods for Sclerotinia Stem Rot of Soybean and Dry Bean. Plant Disease, 2003, 87, 1471-1476.	0.7	76
34	Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538. Theoretical and Applied Genetics, 2010, 121, 599-610.	1.8	76
35	Inheritance of Resistance to the Soybean Aphid in Soybean PI 200538. Crop Science, 2009, 49, 1193-1200.	0.8	75
36	Evaluation of Soybean Germplasm for Resistance to <i>Phakopsora pachyrhizi</i> . Plant Health Progress, 2006, 7, .	0.8	74

#	Article	IF	CITATIONS
37	Overexpression of <i><scp>GmCaM4</scp></i> in soybean enhances resistance to pathogens and tolerance to salt stress. Molecular Plant Pathology, 2014, 15, 145-160.	2.0	74
38	Effect of Fungicide and Timing of Application on Soybean Rust Severity and Yield. Plant Disease, 2009, 93, 243-248.	0.7	73
39	Yield and Seed Quality of Soybean Cultivars Infected with Sclerotinia sclerotiorum. Plant Disease, 1998, 82, 826-829.	0.7	69
40	Adult Plant Evaluation of Soybean Accessions for Resistance to Phakopsora pachyrhizi in the Field and Greenhouse in Paraguay. Plant Disease, 2008, 92, 96-105.	0.7	65
41	Variable Reaction of Tomato Lines to Bacterial Wilt Evaluated at Several Locations in Southeast Asia. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 143-146.	0.5	63
42	Mosquito microbiota cluster by host sampling location. Parasites and Vectors, 2018, 11, 468.	1.0	61
43	Resistance of <1>Glycine 1 Species and Various Cultivated Legumes to the Soybean Aphid (Homoptera:) Tj ETQ	2q1_1_0.78 0.8	34314 rgBT
44	Reaction of Selected Soybean Genotypes to Isolates of Fusarium solani f. sp. glycines and Their Culture Filtrates. Plant Disease, 1998, 82, 999-1002.	0.7	58
45	Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil. Plant Pathology, 2003, 52, 74-83.	1.2	57
46	Evaluation of Perennial <i>Glycine</i> Species for Resistance to Soybean Fungal Pathogens That Cause Sclerotinia Stem Rot and Sudden Death Syndrome. Crop Science, 2000, 40, 545-549.	0.8	54
47	Resistance of Glycine Species and Various Cultivated Legumes to the Soybean Aphid (Homoptera:) Tj ETQq1 1 0	.784314 ı 0.8	∙gBŢ ¦Overloc
48	The Effect of Solar Irradiance on the Mortality of Phakopsora pachyrhizi Urediniospores. Plant Disease, 2006, 90, 941-945.	0.7	54
49	Glyceollin is an Important Component of Soybean Plant Defense Against <i>Phytophthora sojae</i> and <i>Macrophomina phaseolina</i> . Phytopathology, 2013, 103, 984-994.	1.1	54
50	Aggressiveness of <i>Phomopsis longicolla</i> and Other <i>Phomopsis</i> spp. on Soybean. Plant Disease, 2010, 94, 1035-1040.	0.7	53
51	Identification of Multiple Phytotoxins Produced by <i>Fusarium virguliforme</i> Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms. Molecular Plant-Microbe Interactions, 2016, 29, 96-108.	1.4	53
52	Characterization of Insect Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. Frontiers in Plant Science, 2017, 8, 670.	1.7	53
53	Mapping and confirmation of a new sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes PI 567374 and †Ripley'. Molecular Breeding, 2007, 20, 53-62.	1.0	51
54	Characterizing Resistance to <i>Phakopsora pachyrhizi</i> in Soybean. Plant Disease, 2011, 95, 577-581.	0.7	51

#	Article	IF	CITATIONS
55	Quantification of Fusarium solani f. sp. glycines isolates in soybean roots by colony-forming unit assays and real-time quantitative PCR. Theoretical and Applied Genetics, 2008, 117, 343-352.	1.8	50
56	Selected Soybean Plant Introductions with Partial Resistance to Sclerotinia sclerotiorum. Plant Disease, 2002, 86, 971-980.	0.7	49
57	Occurrence of Seed Coat Mottling in Soybean Plants Inoculated with Bean pod mottle virus and Soybean mosaic virus. Plant Disease, 2003, 87, 1333-1336.	0.7	49
58	Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil-bornePseudomonas solanacearumin Taiwan. Plant Pathology, 1997, 46, 600-610.	1.2	48
59	Lignin Degradation by Fusarium solani f. sp. glycines. Plant Disease, 2006, 90, 77-82.	0.7	48
60	New Legume Hosts of Phakopsora pachyrhizi Based on Greenhouse Evaluations. Plant Disease, 2008, 92, 767-771.	0.7	48
61	Identification of QTL for Resistance to Sclerotinia Stem Rot in Soybean Plant Introduction 194639. Crop Science, 2008, 48, 2209-2214.	0.8	48
62	Response of Soybean Pathogens to Glyceollin. Phytopathology, 2010, 100, 897-903.	1.1	48
63	A Cut-Stem Inoculation Technique to Evaluate Soybean for Resistance to <i>Macrophomina phaseolina</i> . Plant Disease, 2012, 96, 1210-1215.	0.7	48
64	Comparison of Field, Greenhouse, and Detached-Leaf Evaluations of Soybean Germplasm for Resistance to <i>Phakopsora pachyrhizi</i> . Plant Disease, 2007, 91, 1161-1169.	0.7	47
65	Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theoretical and Applied Genetics, 2012, 125, 1339-1352.	1.8	47
66	Irrigation and Inoculation Treatments that Increase the Severity of Soybean Sudden Death Syndrome in the Field. Crop Science, 2006, 46, 2547-2554.	0.8	46
67	Similarities in Seed and Aphid Transmission Among Soybean mosaic virus Isolates. Plant Disease, 2007, 91, 546-550.	0.7	46
68	A Coordinated Effort to Manage Soybean Rust in North America: A Success Story in Soybean Disease Monitoring. Plant Disease, 2014, 98, 864-875.	0.7	46
69	Evaluation of Soybean Germplasm for Resistance to Soybean Rust (Phakopsora pachyrhizi) in Nigeria. Plant Disease, 2008, 92, 947-952.	0.7	44
70	Sources of Resistance to Soybean Rust in PerennialGlycineSpecies. Plant Disease, 1992, 76, 396.	0.7	44
71	Effect of crop rotation and tillage system on sclerotinia stem rot on soybean. Canadian Journal of Plant Pathology, 2002, 24, 450-456.	0.8	42
72	Detection of soybean rust using a multispectral image sensor. Sensing and Instrumentation for Food Quality and Safety, 2009, 3, 49-56.	1.5	42

#	Article	IF	CITATIONS
73	The Importance of Phenolic Metabolism to Limit the Growth of <i>Phakopsora pachyrhizi</i> . Phytopathology, 2009, 99, 1412-1420.	1.1	42
74	Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theoretical and Applied Genetics, 2010, 120, 1315-1333.	1.8	42
75	Multiple Loci Condition Seed Transmission of <i>Soybean mosaic virus</i> (SMV) and SMV-Induced Seed Coat Mottling in Soybean. Phytopathology, 2011, 101, 750-756.	1.1	42
76	Molecular Differentiation of Fusarium solani f. sp. glycines from Other F. solani Based on Mitochondrial Small Subunit rDNA Sequences. Phytopathology, 2000, 90, 491-497.	1.1	41
77	Evaluation of USDA Soybean Germplasm Accessions for Resistance to Soybean Rust in the Southern United States. Crop Science, 2011, 51, 678-693.	0.8	41
78	Characterization of <i>Pythium</i> spp. from soil samples in Illinois. Canadian Journal of Plant Pathology, 2012, 34, 448-454.	0.8	41
79	Predicting Water Quality during Dredging and Disposal of Contaminated Sediments from the Sitcum Waterway in Commencement Bay, Washington, USA. Water Science and Technology, 1993, 28, 237-254.	1.2	40
80	Viability staining of soybean suspension-cultured cells and a seedling stem cutting assay to evaluate phytotoxicity of Fusarium solani f. sp. glycines culture filtrates. Plant Cell Reports, 1999, 18, 375-380.	2.8	40
81	Multi-Year Evaluation of Commercial Soybean Cultivars for Resistance to <i>Phytophthora sojae</i> . Plant Disease, 2010, 94, 368-371.	0.7	40
82	Identification and Map Location of <i>TTR1,</i> a Single Locus in <i>Arabidopsis thaliana</i> that Confers Tolerance to Tobacco Ringspot Nepovirus. Molecular Plant-Microbe Interactions, 1996, 9, 729.	1.4	40
83	Interactions Between the Soybean Cyst Nematode and Fusarium solani f. sp. glycines Based on Greenhouse Factorial Experiments. Phytopathology, 2006, 96, 1409-1415.	1.1	39
84	Biochemical Response of Soybean Roots to f. sp. Infection. Crop Science, 2004, 44, 819.	0.8	39
85	Sources of Soybean Rust Resistance Challenged with Singleâ€Spored Isolates of <i>Phakopsora pachyrhizi</i> . Crop Science, 2009, 49, 1781-1785.	0.8	38
86	Pathogenic Variation of Phakopsora pachyrhizi Isolates on Soybean in the United States from 2006 to 2009. Plant Disease, 2012, 96, 75-81.	0.7	38
87	Colletotrichum incanum sp. nov., a curved-conidial species causing soybean anthracnose in USA. Mycologia, 2014, 106, 32-42.	0.8	38
88	Development of Sclerotia and Apothecia of Sclerotinia sclerotiorum from Infected Soybean Seed and Its Control by Fungicide Seed Treatment. Plant Disease, 1999, 83, 1113-1115.	0.7	37
89	Response of Commercially Developed Soybean Cultivars and the Ancestral Soybean Lines to Fusarium solani f. sp. glycines. Plant Disease, 2003, 87, 827-831.	0.7	37
90	Estimating Soybean Genetic Gain for Yield in the Northern United States—Influence of Cropping History. Crop Science, 2013, 53, 2473-2482.	0.8	37

#	Article	IF	CITATIONS
91	From Select Agent to an Established Pathogen: The Response to <i>Phakopsora pachyrhizi</i> (Soybean) Tj ETQq	1 1 0.7843 1.1	3134 rgBT /
92	Response of Ancestral Soybean Lines and Commercial Cultivars to Rhizoctonia Root and Hypocotyl Rot. Plant Disease, 2001, 85, 1091-1095.	0.7	36
93	Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates. Archives of Virology, 2003, 148, 1925-1941.	0.9	36
94	Phytotoxicity of Fusarium solani culture filtrates from soybeans and other hosts assayed by stem cuttings. Australasian Plant Pathology, 2004, 33, 9.	0.5	36
95	Pathogenic Variation of Phakopsora pachyrhizi Infecting Soybean in Nigeria. Phytopathology, 2009, 99, 353-361.	1.1	36
96	Genome-wide association and genomic prediction identifies soybean cyst nematode resistance in common bean including a syntenic region to soybean Rhg1 locus. Horticulture Research, 2019, 6, 9.	2.9	36
97	Incidence of <i>Colletotrichum</i> spp. on Soybeans and Weeds in Illinois and Pathogenicity of <i>Colletotrichum truncatum</i> . Plant Disease, 1986, 70, 780.	0.7	36
98	Evaluation of Glycine max Germ Plasm for Resistance to Fusarium solani f. sp. glycines. Plant Disease, 2002, 86, 741-746.	0.7	35
99	Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean Â. Plant Physiology, 2011, 157, 1975-1986.	2.3	35
100	A Public Program to Evaluate Commercial Soybean Cultivars for Pathogen and Pest Resistance. Plant Disease, 2013, 97, 568-578.	0.7	35
101	Gene Expression Profiling Soybean Stem Tissue Early Response to <i>Sclerotinia sclerotiorum</i> and In Silico Mapping in Relation to Resistance Markers. Plant Genome, 2009, 2, .	1.6	34
102	Suppression of Soilborne Diseases of Soybean With Cover Crops. Plant Disease, 2017, 101, 1918-1928.	0.7	34
103	Occurrence of Sclerotinia sclerotiorum in Soybean Fields in East-Central Illinois and Enumeration of Inocula in Soybean Seed Lots. Plant Disease, 1998, 82, 560-564.	0.7	33
104	Current status of soybean rust control by fungicides. Outlooks on Pest Management, 2003, 14, 197.	0.2	33
105	Resistance to Charcoal Rot Identified in Ancestral Soybean Germplasm. Crop Science, 2015, 55, 1230-1235.	0.8	33
106	Assembly and annotation of a draft genome sequence for Glycine latifolia , a perennial wild relative of soybean. Plant Journal, 2018, 95, 71-85.	2.8	33
107	Field Evaluation of Green Stem Disorder in Soybean Cultivars. Crop Science, 2006, 46, 879-885.	0.8	30
108	Regulation of Plant Immunity through Modulation of Phytoalexin Synthesis. Molecules, 2014, 19, 7480-7496.	1.7	30

7

#	Article	IF	CITATIONS
109	Effect of fungicide seed treatments on <i>Fusarium virguliforme</i> infection of soybean and development of sudden death syndrome. Canadian Journal of Plant Pathology, 2015, 37, 435-447.	0.8	30
110	Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses, 2020, 12, 1376.	1.5	30
111	Evaluation of Ancestral Lines of U.S. Soybean Cultivars for Resistance to Four Soybean Viruses. Crop Science, 2005, 45, 639-644.	0.8	29
112	Identification of novel double-stranded RNA mycoviruses of Fusarium virguliforme and evidence of their effects on virulence. Archives of Virology, 2014, 159, 349-352.	0.9	29
113	Green Stem Disorder of Soybean. Plant Disease, 2006, 90, 513-518.	0.7	28
114	Genetic structure and diversity of <i>Phakopsora pachyrhizi</i> isolates from soyabean. Plant Pathology, 2011, 60, 719-729.	1.2	28
115	Differential Reactions of Soybean Isolines With Combinations of Aphid Resistance Genes <i>Rag1</i> , <i>Rag2</i> , and <i>Rag3</i> to Four Soybean Aphid Biotypes. Journal of Economic Entomology, 2016, 109, 1431-1437.	0.8	28
116	Seed Populations of Striga Species in Nigeria. Plant Disease, 1991, 75, 494.	0.7	28
117	Influence of herbicides on Rhizoctonia root and hypocotyl rot of soybean. Crop Protection, 2002, 21, 679-687.	1.0	27
118	Delayed Senescence in Soybean: Terminology, Research Update, and Survey Results from Growers. Plant Health Progress, 2016, 17, 76-83.	0.8	27
119	Dynamics of Soybean Rust Epidemics in Sequential Plantings of Soybean Cultivars in Nigeria. Plant Disease, 2011, 95, 43-50.	0.7	26
120	Exogenous Controls Increase Negative Call Veracity in Multiplexed, Quantitative PCR Assays for <i>Phakopsora pachyrhizi</i> . Plant Disease, 2011, 95, 343-352.	0.7	25
121	Multilaboratory Comparison of Quantitative PCR Assays for Detection and Quantification of <i>Fusarium virguliforme</i> from Soybean Roots and Soil. Phytopathology, 2015, 105, 1601-1611.	1.1	25
122	Distribution of Leaf-Feeding Beetles and Bean pod mottle virus (BPMV) in Illinois and Transmission of BPMV in Soybean. Plant Disease, 2003, 87, 1221-1225.	0.7	24
123	Soybean mosaic virus helper component-protease enhances somatic embryo production andÂstabilizes transgene expression inÂsoybean. Plant Physiology and Biochemistry, 2005, 43, 1014-1021.	2.8	24
124	Culturing <i>Phakopsora pachyrhizi</i> on Detached Leaves and Urediniospore Survival at Different Temperatures and Relative Humidities. Plant Disease, 2010, 94, 1453-1460.	0.7	24
125	Effect of Fungicide Application and Cultivar on Soybean Green Stem Disorder. Plant Disease, 2013, 97, 1212-1220.	0.7	24
126	Methods and Evaluation of Soybean Genotypes for Resistance to <i>Colletotrichum truncatum</i> . Plant Disease, 2015, 99, 143-148.	0.7	24

#	Article	IF	CITATIONS
127	Production of <i>Macrophomina phaseolina</i> Conidia by Multiple Soybean Isolates in Culture. Plant Disease, 2010, 94, 1088-1092.	0.7	23
128	Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics, 2016, 17, 153.	1.2	23
129	Soybean mosaic virus Helper Component-Protease Alters Leaf Morphology and Reduces Seed Production in Transgenic Soybean Plants. Phytopathology, 2007, 97, 366-372.	1.1	21
130	Zinc deficiency alters soybean susceptibility to pathogens and pests. Journal of Plant Nutrition and Soil Science, 2015, 178, 896-903.	1.1	21
131	Evaluation of Soybean, Dry Bean, and Sunflower for Resistance to. Crop Science, 2004, 44, 777.	0.8	21
132	Evaluation of Artificial Diets for Rearing Aphis glycines (Hemiptera: Aphididae). Journal of Economic Entomology, 2008, 101, 1228-1232.	0.8	20
133	Inheritance of soybean aphid resistance in 21 soybean plant introductions. Theoretical and Applied Genetics, 2014, 127, 43-50.	1.8	20
134	Melanin-Independent Accumulation of Turgor Pressure in Appressoria of <i>Phakopsora pachyrhizi</i> . Phytopathology, 2014, 104, 977-984.	1.1	20
135	Comparison of Pathogenic Variation among <i>Phakopsora pachyrhizi</i> Isolates Collected from the United States and International Locations, and Identification of Soybean Genotypes Resistant to the U.S. Isolates. Plant Disease, 2015, 99, 1059-1069.	0.7	20
136	Two Species of Symbiotic Bacteria Present in the Soybean Aphid (Hemiptera: Aphididae). Environmental Entomology, 2009, 38, 110-115.	0.7	19
137	Evaluation of Disease and Pest Damage on Soybean Cultivars Released from 1923 through 2008 under Field Conditions in Central Illinois. Agronomy Journal, 2015, 107, 2373-2380.	0.9	19
138	Integration of sudden death syndrome resistance loci in the soybean genome. Theoretical and Applied Genetics, 2018, 131, 757-773.	1.8	19
139	Antagonism of Trichoderma-based biofungicides against Brazilian and North American isolates of Sclerotinia sclerotiorum and growth promotion of soybean. BioControl, 2020, 65, 235-246.	0.9	19
140	Whole-genome resequencing identifies quantitative trait loci associated with mycorrhizal colonization of soybean. Theoretical and Applied Genetics, 2020, 133, 409-417.	1.8	19
141	First Report of <i>Phakopsora pachyrhizi</i> Adapting to Soybean Genotypes with <i>Rpp1</i> or <i>Rpp6</i> Rust Resistance Genes in Field Plots in the United States. Plant Disease, 2013, 97, 1379-1379.	0.7	19
142	Characterization and Quantification of Fungal Colonization of Phakopsora pachyrhizi in Soybean Genotypes. Phytopathology, 2014, 104, 86-94.	1.1	18
143	Genetic Mechanisms of Host–Pathogen Interactions for Charcoal Rot in Soybean. Plant Molecular Biology Reporter, 2014, 32, 617-629	1.0	18
144	Prediction of Short-Distance Aerial Movement of <i>Phakopsora pachyrhizi</i> Urediniospores Using Machine Learning. Phytopathology, 2017, 107, 1187-1198.	1.1	18

#	Article	IF	CITATIONS
145	Physical Map Location of the Rps1-k Allele in Soybean. Crop Science, 2001, 41, 1435-1438.	0.8	17
146	Occurrences of Soybean Viruses, Fungal Diseases, and Pests in Illinois Soybean Rust Sentinel Plots. Plant Health Progress, 2010, 11, .	0.8	17
147	Boron and zinc deficiencies and toxicities and their interactions with other nutrients in soybean roots, leaves, and seeds. Journal of Plant Nutrition, 2019, 42, 634-649.	0.9	17
148	Quality of Harvested Seed Associated with Soybean Cultivars and Herbicides Under Weed-Free Conditions. Plant Disease, 2002, 86, 1036-1042.	0.7	16
149	Multiplex Real-time PCR Detection and Differentiation of <i>Colletotrichum</i> Species Infecting Soybean. Plant Disease, 2015, 99, 1559-1568.	0.7	16
150	Responses of soybean genotypes to pathogen infection after the application of elicitors. Crop Protection, 2016, 87, 78-84.	1.0	16
151	Trichothecene-Producing Fusarium Species Isolated from Soybean Roots in Ethiopia and Ghana and their Pathogenicity on Soybean. Plant Disease, 2019, 103, 2070-2075.	0.7	16
152	Red Leaf Blotch of Soybeans. Plant Disease, 1987, 71, 113.	0.7	16
153	Cultural Studies and Pathogenicity of <i>Pseudocercospora fuligena,</i> the Causal Agent of Black Leaf Mold of Tomato. Plant Disease, 1991, 75, 1060.	0.7	16
154	Black Leaf Mold Development and Its Effect on Tomato Yield. Plant Disease, 1992, 76, 462.	0.7	16
155	Hosts of <i>Phakopsora pachyrhizi</i> Identified in Field Evaluations in Florida. Plant Health Progress, 2008, 9, .	0.8	15
156	Comparative Mapping of the Wild Perennial Glycine latifolia and Soybean (G. max) Reveals Extensive Chromosome Rearrangements in the Genus Glycine. PLoS ONE, 2014, 9, e99427.	1.1	15
157	Identification and molecular mapping of two soybean aphid resistance genes in soybean PI 587732. Theoretical and Applied Genetics, 2014, 127, 1251-1259.	1.8	15
158	Soybean aphid biotype 1 genome: Insights into the invasive biology and adaptive evolution of a major agricultural pest. Insect Biochemistry and Molecular Biology, 2020, 120, 103334.	1.2	15
159	First Report of Soybean Rust Caused by Phakopsora pachyrhizi on Phaseolus spp. in the United States. Plant Disease, 2006, 90, 970-970.	0.7	15
160	A Stachybotrys chartarum isolate from soybean. Mycopathologia, 2002, 154, 41-49.	1.3	14
161	Differential Response of Common Bean Cultivars to Phakopsora pachyrhizi. Plant Disease, 2007, 91, 698-704.	0.7	14
162	Effect of <i><scp>F</scp>usarium virguliforme</i> phytotoxin on soybean gene expression suggests a role in multidimensional defence. Molecular Plant Pathology, 2013, 14, 293-307.	2.0	14

#	Article	IF	CITATIONS
163	Pathogenicity and Virulence ofPhytophthora capsicilsolates from Taiwan on Tomatoes and Other Selected Hosts. Plant Disease, 1993, 77, 588.	0.7	14
164	Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi. Planta, 2010, 232, 1181-1189.	1.6	13
165	Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions. Theoretical and Applied Genetics, 2017, 130, 1335-1348.	1.8	13
166	Accessions of Perennial <i>Glycine</i> Species With Resistance to Multiple Types of Soybean Cyst Nematode (<i>Heterodera glycines</i>). Plant Disease, 2017, 101, 1201-1206.	0.7	13
167	Sensitivity of <i>Phakopsora pachyrhizi</i> Isolates to Fungicides and Reduction of Fungal Infection Based on Fungicide and Timing of Application. Plant Disease, 2017, 101, 121-128.	0.7	13
168	The Soybean Aphid Suction Trap Network: Sampling the Aerobiological "Soup― American Entomologist, 2020, 66, 48-55.	0.1	13
169	Chlamydospore formation, production, and nuclear status in <i>Fusarium solani</i> f. sp. <i>glycines</i> soybean sudden death syndrome-causing isolates. Mycologia, 1998, 90, 414-421.	0.8	12
170	Disease―and Performanceâ€Related Traits of Ethyleneâ€Insensitive Soybean. Crop Science, 2006, 46, 893-901.	0.8	12
171	Carbon utilization profiles of Fusarium virguliforme isolates. Canadian Journal of Microbiology, 2010, 56, 979-986.	0.8	12
172	Registration of Eight Soybean Germplasm Lines Resistant to Soybean Rust. Journal of Plant Registrations, 2014, 8, 96-101.	0.4	12
173	Impact of Arbuscular Mycorrhizal Species on <i>Heterodera glycines</i> . Plant Disease, 2020, 104, 2406-2410.	0.7	12
174	Evaluation of Soybean Resistance to Sclerotinia Stem Rot Using Reciprocal Grafting. Plant Disease, 2003, 87, 154-158.	0.7	11
175	Evaluation of Soybean Cultivars with the Rps1k Gene for Partial Resistance or Field Tolerance to Phytophthora sojae. Crop Science, 2006, 46, 2427-2436.	0.8	11
176	Characterization of Soybean <i>STAY-GREEN</i> Genes in Susceptibility to Foliar Chlorosis of Sudden Death Syndrome. Plant Physiology, 2019, 180, 711-717.	2.3	11
177	Genome wide association study identifies novel single nucleotide polymorphic loci and candidate genes involved in soybean sudden death syndrome resistance. PLoS ONE, 2019, 14, e0212071.	1.1	11
178	First Report of Colletotrichum chlorophyti Infecting Soybean Seed in Arkansas, United States. Plant Disease, 2013, 97, 1510-1510.	0.7	11
179	First Report of Paramyrothecium roridum Causing Myrothecium Leaf Spot on Soybean in Africa. Plant Disease, 2018, 102, 2638-2638.	0.7	11
180	First Report of Orange Rust Caused by <i>Puccinia kuehnii</i> in Sugarcane in Louisiana. Plant Disease, 2013, 97, 426-426.	0.7	11

#	Article	IF	CITATIONS
181	Evaluation of Soybean Cultivars, â€~Williams' Isogenic Lines, and Other Selected Soybean Lines for Resistance to Two Soybean Mosaic Virus Strains. Crop Science, 2006, 46, 2649-2653.	0.8	10
182	Soybean Rust Resistance Derived from Glycine tomentella in Amphiploid Hybrid Lines. Crop Science, 2007, 47, 158-161.	0.8	10
183	Life history and morphological plasticity of the soybean aphid, Aphis glycines. Entomologia Experimentalis Et Applicata, 2011, 140, 139-145.	0.7	10
184	Inhibitory Effects of Stilbenes on the Growth of Three Soybean Pathogens in Culture. Phytopathology, 2014, 104, 843-850.	1.1	10
185	Virulence Diversity of <i>Phakopsora pachyrhizi</i> Isolates From East Africa Compared to a Geographically Diverse Collection. Plant Disease, 2017, 101, 1194-1200.	0.7	10
186	First Report of <i>Phakopsora pachyrhizi</i> Causing Rust on Soybean in Malawi. Plant Disease, 2015, 99, 420-420.	0.7	10
187	Occurrence of Soybean Stem Canker (Diaporthe phaseolorum var. meridionalis) in Wisconsin. Plant Disease, 2004, 88, 576-576.	0.7	10
188	A Greenhouse Technique for Assessing Phytophthora Root Rot Resistance in Glycine max and G. soja. Plant Disease, 1997, 81, 1112-1114.	0.7	9
189	Identification of a stress-induced protein in stem exudates of soybean seedlings root-infected with Fusarium solani f. sp. glycines. Plant Physiology and Biochemistry, 2000, 38, 803-809.	2.8	9
190	Mammalian Cell Cytotoxicity Analysis of Soybean Rust Fungicides. Bulletin of Environmental Contamination and Toxicology, 2007, 78, 474-478.	1.3	9
191	Comparisons of Visual Rust Assessments and DNA Levels of <i>Phakopsora pachyrhizi</i> in Soybean Genotypes Varying in Rust Resistance. Plant Disease, 2011, 95, 1007-1012.	0.7	9
192	Stability of Soybean Aphid Resistance in Soybean Across Different Temperatures. Crop Science, 2014, 54, 2557-2563.	0.8	9
193	Effect of Selected Biopesticides in Reducing Soybean Rust (<i>Phakopsora pachyrhizi</i>) Development. Plant Disease, 2019, 103, 2460-2466.	0.7	9
194	A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element. PLoS ONE, 2017, 12, e0176567.	1.1	9
195	Red leaf blotch (Dactuliochaeta glycines) of soybeans (Glycine max) and its relationship to yield. Plant Pathology, 1996, 45, 332-343.	1.2	8
196	Use of Aeroponic Chambers and Grafting to Study Partial Resistance to Fusarium solani f. sp. glycines in Soybean. Plant Disease, 2002, 86, 1223-1226.	0.7	8
197	Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence. Theoretical and Applied Genetics, 2013, 126, 1627-1638.	1.8	8
198	Soybean aphid intrabiotype variability based on colonization of specific soybean genotypes. Insect Science, 2015, 22, 785-792.	1.5	8

#	Article	IF	CITATIONS
199	Reduction of Sudden Death Syndrome Foliar Symptoms and <i>Fusarium virguliforme</i> DNA in Roots Inoculated With <i>Rhizophagus intraradices</i> . Plant Disease, 2020, 104, 1415-1420.	0.7	8
200	Complex life histories predispose aphids to recent abundance declines. Global Change Biology, 2021, 27, 4283-4293.	4.2	8
201	Cultural Studies on <i>Dactuliochaeta glycines,</i> the Causal Agent of Red Leaf Blotch of Soybeans. Plant Disease, 1992, 76, 847.	0.7	8
202	First Report of <i>Soybean dwarf virus</i> in Soybean in Northern Illinois. Plant Disease, 2007, 91, 1686-1686.	0.7	8
203	First Report of Rust Caused by <i>Phakopsora pachyrhizi</i> on Soybean in Democratic Republic of Congo. Plant Disease, 2007, 91, 1204-1204.	0.7	8
204	Aphis glycines virus 1, a new bicistronic virus with two functional internal ribosome entry sites, is related to a group of unclassified viruses in the Picornavirales. Journal of General Virology, 2020, 101, 105-111.	1.3	8
205	Dactuliochaeta, A New Genus for the Fungus Causing Red Leaf Blotch of Soybeans. Mycologia, 1988, 80, 696-706.	0.8	7
206	Diverse Soybean Accessions Identified with Temperatureâ€5ensitive Resistance to <i>Tobacco Streak Virus</i> . Crop Science, 2012, 52, 738-744.	0.8	7
207	Optimizing Conditions of a Cell-Free Toxic Filtrate Stem Cutting Assay to Evaluate Soybean Genotype Responses to <i>Fusarium</i> Species that Cause Sudden Death Syndrome. Plant Disease, 2015, 99, 502-507.	0.7	7
208	Virulence of Soybean Aphid, Aphis glycines (Hemiptera: Aphididae) Clones on Detached Leaves and Whole Plants. Journal of the Kansas Entomological Society, 2020, 92, 497.	0.1	7
209	Resistance in Lycopersicon species to black leaf mold caused by Pseudocercospora Fuligena. Euphytica, 1993, 71, 125-130.	0.6	6
210	A Multiplexed Immunofluorescence Method Identifies <i>Phakopsora pachyrhizi</i> Urediniospores and Determines Their Viability. Phytopathology, 2012, 102, 1143-1152.	1.1	6
211	Archaeophytopathology of <i>Phakopsora pachyrhizi</i> , the Soybean Rust Pathogen. Plant Disease, 2015, 99, 575-579.	0.7	6
212	Field evaluation of three sources of genetic resistance to sudden death syndrome of soybean. Theoretical and Applied Genetics, 2018, 131, 1541-1552.	1.8	6
213	Evaluation of Soybean for Resistance to Neohyadatothrips variabilis (Thysanoptera: Thripidae) Noninfected and Infected With Soybean Vein Necrosis Virus. Journal of Economic Entomology, 2020, 113, 949-955.	0.8	6
214	First Report of Stachybotrys chartarum Causing Soybean Root Rot. Plant Disease, 2000, 84, 100-100.	0.7	6
215	First Report of Soybean Rust Caused by <i>Phakopsora pachyrhizi</i> on <i>Pachyrhizus erosus</i> in the United States. Plant Disease, 2011, 95, 1034-1034.	0.7	6
216	Genetic analysis of partial resistance to <i>Rhizoctonia solani</i> in the soybean cultivar â€~Savoy'. Canadian Journal of Plant Pathology, 2005, 27, 137-142.	0.8	5

#	Article	IF	CITATIONS
217	Evaluation of Foliar Diseases for Soybean Entries in the Pan-African Trials in Malawi and Zambia. Plant Disease, 2020, 104, 2068-2073.	0.7	5
218	Discovery of a Novel Member of the Carlavirus Genus from Soybean (Glycine max L. Merr.). Pathogens, 2021, 10, 223.	1.2	5
219	First Report of Soybean Rust (<i>Phakopsora pachyrhizi</i>) on Florida Beggarweed (<i>Desmodium) Tj ETQq1</i>	1 0.78431 0.7	4 rgBT /Overl
220	First Report of <i>Curtobacterium flaccumfaciens</i> pv. <i>flaccumfaciens</i> Causing Bacterial Tan Spot on Soybean in Africa. Plant Disease, 2019, 103, 2665-2665.	0.7	5
221	Registration of Three Soybean Germplasm Lines Resistant to Phakopsora pachyrhizi (Soybean Rust). Journal of Plant Registrations, 2010, 4, 244-248.	0.4	5
222	Use of Quantitative Traits to Assess Aggressiveness of <i>Phakopsora pachyrhizi</i> Isolates from Nigeria and the United States. Plant Disease, 2014, 98, 1261-1266.	0.7	4
223	Association of Green Stem Disorder with Agronomic Traits in Soybean. Agronomy Journal, 2016, 108, 2263-2268.	0.9	4
224	First Report of <i>Albifimbria verrucaria</i> Causing Leaf Spot on <i>Glycine latifolia</i> . Plant Disease, 2020, 104, 576.	0.7	4
225	Evaluation of wild perennial Clycine species for resistance to soybean cyst nematode and soybean rust. Plant Breeding, 2020, 139, 923-931.	1.0	3
226	First Report of <i>Sclerotinia sclerotiorum</i> Causing Stem Rot on Soybean (<i>Glycine max</i>) in Ethiopia. Plant Disease, 2019, 103, 2676-2676.	0.7	3
227	First Report of Soybean Rust Caused by <i>Phakopsora pachyrhizi</i> on Kudzu (<i>Pueraria) Tj ETQq1 1 0.7843</i>	814.rgBT /0	Ovgrlock 10 T
228	Potential Threat of Bruchids on Soybean Production in Sub-Saharan Africa. Plant Health Progress, 2021, 22, 86-91.	0.8	2
229	First Report of <i>Puccinia kuehnii</i> Causing Orange Rust of Sugarcane in Texas, U.S.A Plant Disease, 2020, 104, 2731.	0.7	1
230	New record of the cotton aphid, Aphis gossypii (Hemiptera: Aphididae) on soybean in Zambia. International Journal of Tropical Insect Science, 2021, 41, 883-885.	0.4	1
231	Evaluation of Soybean Entries in the Pan-African Trials for Response to Coniothyrium glycines, the Cause of Red Leaf Blotch. Plant Disease, 2021, , .	0.7	1
232	Plant-Parasitic and Free-Living Nematodes from Organically Farmed Fields in Illinois and Wisconsin. Plant Health Progress, 2022, 23, 227-234.	0.8	1
233	Impact of Herbicides on Heterodera glycines Susceptible and Resistant Soybean Cultivars. Journal of Nematology, 2003, 35, 88-97.	0.4	1
234	Registration of seven disease―and pestâ€resistant vegetable soybean germplasm lines. Journal of Plant Registrations, 2022, 16, 438-445.	0.4	1

#	Article	IF	CITATIONS
235	Mapping and confirmation of two genes conferring resistance to soybean rust (<i>Phakopsora) Tj ETQq1 1 0.7</i>	7843]4 rgB	BT /Overlock 10