
## Marc Legros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/397285/publications.pdf Version: 2024-02-01



MADELECDOS

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Materialia, 2006, 54, 2253-2263.                 | 7.9  | 468       |
| 2  | In situ observation of dislocation nucleation andÂescape in a submicrometre aluminium singleÂcrystal.<br>Nature Materials, 2009, 8, 95-100.                                         | 27.5 | 400       |
| 3  | Observation of Giant Diffusivity Along Dislocation Cores. Science, 2008, 319, 1646-1649.                                                                                            | 12.6 | 374       |
| 4  | In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films.<br>Acta Materialia, 2008, 56, 3380-3393.                                         | 7.9  | 372       |
| 5  | Microsample tensile testing of nanocrystalline metals. Philosophical Magazine A: Physics of<br>Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1017-1026. | 0.6  | 265       |
| 6  | Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta<br>Materialia, 2009, 57, 2198-2209.                                           | 7.9  | 179       |
| 7  | In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Materialia, 2012, 60, 3402-3414.                                      | 7.9  | 128       |
| 8  | Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and<br>Ni. Acta Materialia, 2011, 59, 1456-1463.                                      | 7.9  | 124       |
| 9  | Elementary Mechanisms of Shear-Coupled Grain Boundary Migration. Physical Review Letters, 2013, 110, 265507.                                                                        | 7.8  | 121       |
| 10 | In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at<br>the nanoscale. Acta Materialia, 2007, 55, 5558-5571.                          | 7.9  | 116       |
| 11 | Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries. Acta<br>Materialia, 2009, 57, 2390-2402.                                                     | 7.9  | 113       |
| 12 | Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Philosophical Magazine, 2013, 93, 1299-1316.                               | 1.6  | 109       |
| 13 | Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study.<br>Acta Materialia, 2013, 61, 205-216.                                     | 7.9  | 106       |
| 14 | Quantitative <i>In Situ</i> Mechanical Testing in Electron Microscopes. MRS Bulletin, 2010, 35, 354-360.                                                                            | 3.5  | 102       |
| 15 | The role of disconnections in deformation-coupled grain boundary migration. Acta Materialia, 2014,<br>77, 223-235.                                                                  | 7.9  | 90        |
| 16 | <i>In situ</i> TEM nanomechanics. MRS Bulletin, 2015, 40, 62-70.                                                                                                                    | 3.5  | 78        |
| 17 | Source-based strengthening of sub-micrometer Al fibers. Acta Materialia, 2012, 60, 977-983.                                                                                         | 7.9  | 77        |
| 18 | Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films. Scripta Materialia, 2015, 99, 5-8.                   | 5.2  | 68        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In situ mechanical TEM: Seeing and measuring under stress with electrons. Comptes Rendus Physique, 2014, 15, 224-240.                                                                                                                           | 0.9 | 59        |
| 20 | Microstructural evolution in passivated Al films on Si substrates during thermal cycling. Acta<br>Materialia, 2002, 50, 3435-3452.                                                                                                              | 7.9 | 57        |
| 21 | SMIG model: A new geometrical model to quantify grain boundary-based plasticity. Acta Materialia,<br>2010, 58, 3676-3689.                                                                                                                       | 7.9 | 57        |
| 22 | Direct observation and quantification of grain boundary shear-migration coupling in polycrystalline<br>Al. Journal of Materials Science, 2011, 46, 4308-4313.                                                                                   | 3.7 | 54        |
| 23 | Identification of Dislocations in Synthetic Chemically Vapor Deposited Diamond Single Crystals.<br>Crystal Growth and Design, 2016, 16, 2741-2746.                                                                                              | 3.0 | 52        |
| 24 | Disconnections kinks and competing modes in shear-coupled grain boundary migration. Physical Review B, 2016, 93, .                                                                                                                              | 3.2 | 52        |
| 25 | Prismatic and basal slip in Ti3Al I. Frictional forces on dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 73, 61-80.                                                   | 0.6 | 51        |
| 26 | In situ deformation of thin films on substrates. Microscopy Research and Technique, 2009, 72, 270-283.                                                                                                                                          | 2.2 | 40        |
| 27 | In situ TEM observation of grain annihilation in tricrystalline aluminum films. Acta Materialia, 2012,<br>60, 2209-2218.                                                                                                                        | 7.9 | 38        |
| 28 | Prismatic and basal slip in Ti3Al II. Dislocation interactions and cross-slip processes. Philosophical<br>Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 73, 81-99.                               | 0.6 | 33        |
| 29 | Shape and Effective Spring Constant of Liquid Interfaces Probed at the Nanometer Scale: Finite Size Effects. Langmuir, 2015, 31, 9790-9798.                                                                                                     | 3.5 | 32        |
| 30 | Evolution of extended defects in polycrystalline UO2 under heavy ion irradiation: combined TEM, XRD and Raman study. Nuclear Instruments & Methods in Physics Research B, 2016, 374, 51-57.                                                     | 1.4 | 32        |
| 31 | Mechanisms of copper direct bonding observed by in-situ and quantitative transmission electron microscopy. Thin Solid Films, 2013, 530, 96-99.                                                                                                  | 1.8 | 30        |
| 32 | Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic<br>masks. Diamond and Related Materials, 2015, 58, 62-68.                                                                                     | 3.9 | 29        |
| 33 | Universal mechanisms of Al metallization ageing in power MOSFET devices. Microelectronics<br>Reliability, 2014, 54, 2432-2439.                                                                                                                  | 1.7 | 28        |
| 34 | An in-situ transmission electron microscopy study of pyramidal slip in Ti3Al: I. Geometry and kinetics<br>of glide. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical<br>Properties, 1997, 76, 995-1011. | 0.6 | 27        |
| 35 | In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation. Journal of Materials Science, 2006, 41, 4484-4489.                                                                                | 3.7 | 27        |
| 36 | Strain compensation by twinning in Au thin films: Experiment and model. Acta Materialia, 2007, 55, 6659-6665.                                                                                                                                   | 7.9 | 27        |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Discerning size effect strengthening in ultrafine-grained Mg thin films. Scripta Materialia, 2014, 75, 10-13.                                                                                                                                                                         | 5.2 | 27        |
| 38 | Full characterization of dislocations in ion-irradiated polycrystalline UO2. Journal of Nuclear<br>Materials, 2017, 494, 252-259.                                                                                                                                                     | 2.7 | 27        |
| 39 | Size effects on intergranular crack growth mechanisms in ultrathin nanocrystalline gold<br>free-standing films. Acta Materialia, 2018, 143, 77-87.                                                                                                                                    | 7.9 | 27        |
| 40 | Dynamic observation of Al thin films plastically strained in a TEM. Materials Science & Engineering<br>A: Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 463-467.                                                                                    | 5.6 | 26        |
| 41 | Characterization of alterations on power MOSFET devices under extreme electro-thermal fatigue.<br>Microelectronics Reliability, 2010, 50, 1768-1772.                                                                                                                                  | 1.7 | 26        |
| 42 | Evolution of extended defects in polycrystalline Au-irradiated UO 2 using in situ TEM: Temperature and fluence effects. Journal of Nuclear Materials, 2016, 482, 105-113.                                                                                                             | 2.7 | 26        |
| 43 | An <i>in-situ</i> transmission electron microscopy study of pyramidal slip in Ti <sub>3</sub> Al: II. Fine structure of dislocations and dislocation loops. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 1013-1032. | 0.6 | 25        |
| 44 | In-situ observation of deformation micromechanisms in a rafted γ/γ′ superalloy at 850°C. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002,<br>337, 160-169.                                                                | 5.6 | 24        |
| 45 | Characterization and modelling of ageing failures on power MOSFET devices. Microelectronics<br>Reliability, 2007, 47, 1735-1740.                                                                                                                                                      | 1.7 | 24        |
| 46 | Microstructure and deformation mechanisms in nanocrystalline Ni–Fe. Part I. Microstructure. Acta<br>Materialia, 2013, 61, 5835-5845.                                                                                                                                                  | 7.9 | 24        |
| 47 | Characterization of ageing failures on power MOSFET devices by electron and ion microscopies.<br>Microelectronics Reliability, 2009, 49, 1330-1333.                                                                                                                                   | 1.7 | 22        |
| 48 | Evolution of the nanoporous microstructure of sintered Ag at high temperature using in-situ X-ray nanotomography. Acta Materialia, 2018, 156, 310-317.                                                                                                                                | 7.9 | 22        |
| 49 | Quantifying and observing viscoplasticity at the nanoscale: highly localized deformation mechanisms in ultrathin nanocrystalline gold films. Nanoscale, 2016, 8, 9234-9244.                                                                                                           | 5.6 | 21        |
| 50 | Micropillar compression study of Fe-irradiated 304L steel. Scripta Materialia, 2019, 172, 56-60.                                                                                                                                                                                      | 5.2 | 21        |
| 51 | In situ TEM study of twin boundary migration in sub-micron Be fibers. Acta Materialia, 2015, 96, 57-65.                                                                                                                                                                               | 7.9 | 19        |
| 52 | <i>In situ</i> transmission electron microscopy investigation of threading dislocation motion in passivated thin aluminum films. Journal of Materials Research, 1999, 14, 4673-4676.                                                                                                  | 2.6 | 18        |
| 53 | Extended defect change in UO2 during in situ TEM annealing. Acta Materialia, 2020, 196, 240-251.                                                                                                                                                                                      | 7.9 | 17        |
| 54 | Fatigue of single crystalline silicon: Mechanical behaviour and TEM observations. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484,<br>353-364.                                                                   | 5.6 | 16        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Orientation-related twinning and dislocation glide in a cantor high entropy alloy at room and cryogenic temperature studied by in situ TEM straining. Materials Chemistry and Physics, 2021, 272, 124955.                                                                      | 4.0 | 16        |
| 56 | Grain morphology of Cu damascene lines. Microelectronic Engineering, 2010, 87, 383-386.                                                                                                                                                                                        | 2.4 | 14        |
| 57 | Preparation of H-bar cross-sectional specimen for in situ TEM straining experiments: A FIB-based<br>method applied to a nitrided Ti–6Al–4V alloy. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2011, 528, 1367-1371. | 5.6 | 14        |
| 58 | Irradiation-assisted stress corrosion cracking susceptibility and mechanical properties related to<br>irradiation-induced microstructures of 304L austenitic stainless steel. Journal of Nuclear Materials,<br>2020, 528, 151880.                                              | 2.7 | 14        |
| 59 | Heterogeneous disconnection nucleation mechanisms during grain boundary migration. Physical<br>Review Materials, 2019, 3, .                                                                                                                                                    | 2.4 | 14        |
| 60 | Influence of exogenous xenon atoms on the evolution kinetics of extended defects in polycrystalline<br>UO2 using in situ TEM. Journal of Nuclear Materials, 2018, 512, 297-306.                                                                                                | 2.7 | 13        |
| 61 | Shear-coupled grain-boundary migration dependence on normal strain/stress. Physical Review<br>Materials, 2017, 1, .                                                                                                                                                            | 2.4 | 13        |
| 62 | Impact of in situ nanomechanics on physical metallurgy. MRS Bulletin, 2019, 44, 465-470.                                                                                                                                                                                       | 3.5 | 12        |
| 63 | Innovative Methodology for Predictive Reliability of Intelligent Power Devices Using Extreme<br>Electro-thermal Fatigue. Microelectronics Reliability, 2005, 45, 1717-1722.                                                                                                    | 1.7 | 11        |
| 64 | Pattern size dependence of grain growth in Cu interconnects. Scripta Materialia, 2010, 63, 965-968.                                                                                                                                                                            | 5.2 | 11        |
| 65 | 3D nanostructural characterisation of grain boundaries in atom probe data utilising machine<br>learning methods. PLoS ONE, 2019, 14, e0225041.                                                                                                                                 | 2.5 | 11        |
| 66 | Impact of thermal cycling on the evolution of grain, precipitate and dislocation structure in Al, 0.5%<br>Cu, 1% Si thin films. Microelectronic Engineering, 2003, 70, 447-454.                                                                                                | 2.4 | 10        |
| 67 | Absorption of crystal/amorphous interfacial dislocations during in situ TEM nanoindentation of an<br>Al thin film on Si. Scripta Materialia, 2014, 74, 44-47.                                                                                                                  | 5.2 | 10        |
| 68 | In-depth investigation of metallization aging in power MOSFETs. Microelectronics Reliability, 2015, 55, 1966-1970.                                                                                                                                                             | 1.7 | 10        |
| 69 | Subgrains, micro-twins and dislocations characterization in monolike Si using TEM and in-situ TEM.<br>Materials Today: Proceedings, 2018, 5, 14732-14747.                                                                                                                      | 1.8 | 10        |
| 70 | Plasticity Mechanisms in Subâ€Micron Al Fiber Investigated by In Situ TEM. Advanced Engineering<br>Materials, 2012, 14, 955-959.                                                                                                                                               | 3.5 | 9         |
| 71 | Fatigue testing of single crystalline silicon. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2001, 309-310, 233-236.                                                                                                  | 5.6 | 8         |
| 72 | Pipe-diffusion ripening of Si precipitates in Al-0.5%Cu-1%Si thin films. Philosophical Magazine, 2005, 85, 3541-3552.                                                                                                                                                          | 1.6 | 8         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mechanisms of power module source metal degradation during electro-thermal aging.<br>Microelectronics Reliability, 2017, 76-77, 507-511.                                                                                          | 1.7 | 8         |
| 74 | Multiple coupling modes to relax shear strain during grain boundary migration. Acta Materialia, 2021, 218, 117222.                                                                                                                | 7.9 | 8         |
| 75 | Spatial distribution of structural defects in Cz-seeded directionally solidified silicon ingots: An etch pit study. Journal of Crystal Growth, 2018, 483, 183-189.                                                                | 1.5 | 8         |
| 76 | Low-cycle fatigue in silicon: comparison with fcc metals. Fatigue and Fracture of Engineering<br>Materials and Structures, 2007, 30, 41-56.                                                                                       | 3.4 | 7         |
| 77 | In situ observations of unusual dislocation mechanisms in the intermetallic alloy Ti3Al. Journal of Microscopy, 2001, 203, 90-98.                                                                                                 | 1.8 | 6         |
| 78 | Plasticity-Related Phenomena in Metallic Films on Substrates. Materials Research Society Symposia<br>Proceedings, 2003, 779, 421.                                                                                                 | 0.1 | 6         |
| 79 | In-Situ TEM Study of Plastic Stress Relaxation Mechanisms and Interface Effects in Metallic Films.<br>Materials Research Society Symposia Proceedings, 2005, 875, 1.                                                              | 0.1 | 6         |
| 80 | Aluminum metallization and wire bonding aging in power MOSFET modules. Materials Today:<br>Proceedings, 2018, 5, 14641-14651.                                                                                                     | 1.8 | 6         |
| 81 | An in situ study at room temperature of deformation processes in a Ti-23.7Al-9.4Nb alloy.<br>Intermetallics, 1996, 4, 387-401.                                                                                                    | 3.9 | 5         |
| 82 | Mechanical behaviour and dislocation arrangements of cyclically deformed silicon single crystals.<br>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical<br>Properties, 2002, 82, 3275-3288. | 0.6 | 4         |
| 83 | Fatigue testing and the evolution of the defect microstructure in Si single crystals by transmission electron microscopy. Journal of Physics Condensed Matter, 2002, 14, 12871-12882.                                             | 1.8 | 4         |
| 84 | Alterations induced in the structure of intelligent power devices by extreme electro-thermal fatigue.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2997-3001.                                      | 0.8 | 4         |
| 85 | Role of sessile disconnection dipoles in shear-coupled grain boundary migration. Physical Review<br>Materials, 2020, 4, .                                                                                                         | 2.4 | 4         |
| 86 | In Situ Deformation at 850°C of Standard and Rafted Microstructures of Nickel Base Superalloys.<br>Materials Science Forum, 2006, 509, 57-62.                                                                                     | 0.3 | 3         |
| 87 | Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals?. Comptes Rendus Physique, 2021, 22, 19-34.                                                                  | 0.9 | 2         |
| 88 | Deformation mechanisms in submicron Be wires. Journal of Materials Research, 2017, 32, 4616-4625.                                                                                                                                 | 2.6 | 2         |
| 89 | Size-Induced Transition from Perfect to Partial Dislocation Plasticity in Single Crystal Au Films on Polyimide. Microscopy and Microanalysis, 2007, 13, 278-279.                                                                  | 0.4 | 1         |
| 90 | Some applications of nanometer scale structures for current and future X-ray space research.<br>Journal De Physique III, 1994, 4, 1599-1612.                                                                                      | 0.3 | 1         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Tiny but mighty: Size effects on the strength of metals. , 2016, , .                                                                                                                                          |     | Ο         |
| 92 | The effect of electro-thermal fatigue on the structure of power electronic devices. Micro-structural evolution of the metallization layer. International Journal of Materials Research, 2009, 100, 1178-1181. | 0.3 | 0         |