Andrei Tereshchenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3972537/publications.pdf

Version: 2024-02-01

1307594 1372567 10 143 10 7 citations g-index h-index papers 12 12 12 138 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Binding and Action of Amino Acid Analogs of Chloramphenicol upon the Bacterial Ribosome. Journal of Molecular Biology, 2018, 430, 842-852.	4.2	47
2	Binding and Action of Triphenylphosphonium Analog of Chloramphenicol upon the Bacterial Ribosome. Antibiotics, 2021, 10, 390.	3.7	16
3	Insights into the improved macrolide inhibitory activity from the high-resolution cryo-EM structure of dirithromycin bound to the <i>E. coli</i> 70S ribosome. Rna, 2020, 26, 715-723.	3.5	15
4	Conjugates of Amino Acids and Peptides with 5- <i>O</i> -Mycaminosyltylonolide and Their Interaction with the Ribosomal Exit Tunnel. Bioconjugate Chemistry, 2013, 24, 1861-1869.	3.6	14
5	New fluorescent macrolide derivatives for studying interactions of antibiotics and their analogs with the ribosomal exit tunnel. Biochemistry (Moscow), 2016, 81, 1163-1172.	1.5	12
6	Structure of Dirithromycin Bound to the Bacterial Ribosome Suggests New Ways for Rational Improvement of Macrolides. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
7	Triphenilphosphonium Analogs of Chloramphenicol as Dual-Acting Antimicrobial and Antiproliferating Agents. Antibiotics, 2021, 10, 489.	3.7	11
8	Interaction of chloramphenicol tripeptide analogs with ribosomes. Biochemistry (Moscow), 2016, 81, 392-400.	1.5	6
9	Modeling interactions of erythromycin derivatives with ribosomes. Biochemistry (Moscow), 2015, 80, 1500-1507.	1.5	5
10	Interaction of Chloramphenicol Cationic Peptide Analogues with the Ribosome. Biochemistry (Moscow), 2020, 85, 1443-1457.	1.5	2