
Dayanand C Kalyani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/397240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 2009, 163, 735-742.	6.5	325
2	Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technology, 2009, 100, 2493-2500.	4.8	305
3	Can laccases catalyze bond cleavage in lignin?. Biotechnology Advances, 2015, 33, 13-24.	6.0	296
4	Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technology, 2008, 99, 4635-4641.	4.8	278
5	Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresource Technology, 2010, 101, 165-173.	4.8	257
6	Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. Journal of Hazardous Materials, 2010, 176, 503-509.	6.5	240
7	Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. Journal of Hazardous Materials, 2011, 186, 713-723.	6.5	198
8	Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium. Ecotoxicology and Environmental Safety, 2011, 74, 1288-1296.	2.9	130
9	Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR. Bioresource Technology, 2011, 102, 1752-1756.	4.8	108
10	Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye C.I. Reactive Orange 16. Journal of Hazardous Materials, 2009, 172, 298-309.	6.5	103
11	Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chemical Engineering Journal, 2013, 230, 27-35.	6.6	102
12	Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. Journal of Hazardous Materials, 2010, 184, 290-298.	6.5	98
13	Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresource Technology, 2012, 123, 636-645.	4.8	95
14	Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel, 2013, 107, 815-822.	3.4	90
15	Simultaneous pretreatment and saccharification: Green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresource Technology, 2015, 179, 50-57.	4.8	90
16	Biodegradation of Crystal Violet by Agrobacterium radiobacter. Journal of Environmental Sciences, 2011, 23, 1384-1393.	3.2	84
17	Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 252-260.	1.8	79
18	Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. Biotechnology for Biofuels, 2018, 11, 19.	6.2	78

DAYANAND C KALYANI

#	Article	IF	CITATIONS
19	Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1181-1190.	1.4	68
20	Biodegradation and Detoxification of Reactive Textile Dye by Isolated <i>Pseudomonas</i> sp. SUK1. Water Environment Research, 2009, 81, 298-307.	1.3	68
21	Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochemistry, 2012, 47, 671-678.	1.8	60
22	Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation, 2009, 20, 245-255.	1.5	58
23	Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating. ACS Applied Materials & Interfaces, 2014, 6, 22894-22904.	4.0	54
24	A Highly Efficient Recombinant Laccase from the Yeast Yarrowia lipolytica and Its Application in the Hydrolysis of Biomass. PLoS ONE, 2015, 10, e0120156.	1.1	50
25	Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization. Annals of Microbiology, 2011, 61, 483-491.	1.1	45
26	Biofuel production from birch wood by combining high solid loading simultaneous saccharification and anaerobic digestion. Applied Energy, 2017, 193, 210-219.	5.1	45
27	Industrial dye decolorizing lignin peroxidase from Kocuria rosea MTCC 1532. Annals of Microbiology, 2012, 62, 217-223.	1.1	40
28	Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Technologies and Environmental Policy, 2012, 14, 989-1001.	2.1	36
29	Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1. Journal of Microbiology and Biotechnology, 2013, 23, 843-849.	0.9	33
30	Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. Journal of Food Science and Technology, 2014, 51, 1483-1491.	1.4	32
31	Characterization of a novel xylanase from Armillaria gemina and its immobilization onto SiO2 nanoparticles. Applied Microbiology and Biotechnology, 2013, 97, 1081-1091.	1.7	30
32	Molecular and biochemical characterization of a new thermostable bacterial laccase from Meiothermus ruber DSM 1279. RSC Advances, 2016, 6, 3910-3918.	1.7	26
33	Biodecolorization of Azo Dye Remazol Orange by Pseudomonas aeruginosa BCH and Toxicity (Oxidative) Tj ETQq1 1319-1334.	l 1 0.784: 1.4	314 rgBT /O 24
34	LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Biotechnology and Bioengineering, 2017, 114, 552-559.	1.7	23
35	Valorisation of woody biomass by combining enzymatic saccharification and pyrolysis. Green Chemistry, 2017, 19, 3302-3312.	4.6	22
36	Characterization of a recombinant aryl β-glucosidase from Neosartorya fischeri NRRL181. Applied Microbiology and Biotechnology, 2012, 94, 413-423.	1.7	16

DAYANAND C KALYANI

#	Article	IF	CITATIONS
37	Characterization of Cellobiohydrolase from a Newly Isolated Strain of Agaricus arvencis. Journal of Microbiology and Biotechnology, 2011, 21, 711-718.	0.9	16
38	Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum. Bioresource Technology, 2012, 117, 310-316.	4.8	13
39	Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS ONE, 2018, 13, e0204703.	1.1	13
40	Comparison of pyrolyzed lignin before and after milled wood lignin purification of Norway spruce with increasing steam explosion. Wood Science and Technology, 2019, 53, 601-618.	1.4	8
41	Role of Glu445 in the substrate binding of β-glucosidase. Process Biochemistry, 2012, 47, 2365-2372.	1.8	7
42	A Transmembrane Crenarchaeal Mannosyltransferase Is Involved in N-Glycan Biosynthesis and Displays an Unexpected Minimal Cellulose-Synthase-like Fold. Journal of Molecular Biology, 2020, 432, 4658-4672.	2.0	7
43	A homodimeric bacterial exo-β-1,3-glucanase derived from moose rumen microbiome shows a structural framework similar to yeast exo-β-1,3-glucanases. Enzyme and Microbial Technology, 2021, 143, 109723.	1.6	7
44	Bioremediation Perspective of Navy Blue Rx–Containing Textile Effluent by Bacterial Isolate. Bioremediation Journal, 2012, 16, 185-194.	1.0	5
45	Biotreatment of paper mill effluent using alkaliphilicRhizobiumsp. NCIM 5590 isolated from meteoric alkaline Lonar Lake, Buldhana District, Maharashtra, India. Lakes and Reservoirs: Research and Management, 2018, 23, 130-138.	0.6	5
46	Editorial: Microbiotechnology Tools for Wastewater Cleanup and Organic Solids Reduction. Frontiers in Microbiology, 2021, 12, 631506.	1.5	4
47	Crystal structure of a homotrimeric verrucomicrobial exo-β-1,4-mannosidase active in the hindgut of the wood-feeding termite Reticulitermes flavipes. Journal of Structural Biology: X, 2021, 5, 100048.	0.7	2

48 Laccases: Blue Copper Oxidase in Lignocellulose Processing. , 2017, , 315-336.

0