Fang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971262/publications.pdf

Version: 2024-02-01

304743 276875 1,867 42 22 41 citations h-index g-index papers 43 43 43 3051 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Preparation and characterization of super hydrophobic aerogels derived from tunicate cellulose nanocrystals. Carbohydrate Research, 2022, 511, 108488.	2.3	12
2	Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. International Journal of Biological Macromolecules, 2022, 201, 104-110.	7.5	21
3	Design of Fe ³⁺ -Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules, 2022, 23, 766-778.	5.4	32
4	Study on the effect of tunicate cellulose nanocrystals in the preparation of sodium alginate-based enteric capsule. Cellulose, 2022, 29, 2497-2511.	4.9	4
5	High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties. International Journal of Biological Macromolecules, 2022, 207, 48-61.	7.5	22
6	Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application. International Journal of Biological Macromolecules, 2022, 212, 275-282.	7.5	11
7	Lignin-containing hydrogels with anti-freezing, excellent water retention and super-flexibility for sensor and supercapacitor applications. International Journal of Biological Macromolecules, 2022, 214, 77-90.	7.5	18
8	Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications. International Journal of Biological Macromolecules, 2021, 187, 189-199.	7.5	27
9	Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. Journal of Hazardous Materials, 2020, 387, 121714.	12.4	56
10	A cellulose-based nanofiltration membrane with a stable three-layer structure for the treatment of drinking water. Cellulose, 2020, 27, 8237-8253.	4.9	31
11	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	10.3	53
12	Conversion of Loblolly pine biomass residues to bio-oil in a two-step process: Fast pyrolysis in the presence of zeolite and catalytic hydrogenation. Industrial Crops and Products, 2020, 148, 112318.	5.2	21
13	Preparation and Characterization of Various Kraft Lignins and Impact on Their Pyrolysis Behaviors. Industrial & Engineering Chemistry Research, 2020, 59, 3310-3320.	3.7	20
14	Study on the Anti-Biodegradation Property of Tunicate Cellulose. Polymers, 2020, 12, 3071.	4.5	9
15	Effect of using regenerated combined FAU and MOR zeolites as catalysts during the pyrolysis of kraft lignin. BioResources, 2020, 16, 417-440.	1.0	6
16	Effect of the particle size of magnesium hydroxide on the cellulose polymerization during the oxygen delignification of radiata pine kraft pulp. Cellulose, 2019, 26, 6571-6581.	4.9	2
17	Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose, 2019, 26, 4061-4069.	4.9	23
18	Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites. Science of the Total Environment, 2019, 664, 363-373.	8.0	24

#	Article	IF	CITATIONS
19	Preparation of transparent film via cellulose regeneration: Correlations between ionic liquid and film properties. Carbohydrate Polymers, 2019, 203, 214-218.	10.2	53
20	New Alkaloid and Aromatic Glucoside from the Flowers of Cymbidium Lunagrad Eternal Green. Molecules, 2018, 23, 99.	3.8	1
21	Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride. ACS Sustainable Chemistry and Engineering, 2018, 6, 13168-13176.	6.7	46
22	Synergistic effects of enzyme pretreatment for hemicellulose separation from paper-grade pulp in ionic liquid/water. Cellulose, 2018, 25, 4193-4198.	4.9	7
23	Global protein expression profile response of planktonic Aeromonas hydrophila exposed to chlortetracycline. World Journal of Microbiology and Biotechnology, 2017, 33, 68.	3.6	36
24	Preparation and characterization of cellulose nanofiltration membrane through hydrolysis followed by carboxymethylation. Fibers and Polymers, 2017, 18, 1235-1242.	2.1	13
25	Facile synthesis of reduced graphene oxide/trimethyl chlorosilaneâ€coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnology, 2017, 11, 929-934.	3.8	28
26	Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 4563-4572.	6.7	73
27	Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 2016, 18, 1306-1312.	9.0	172
28	Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Research, 2015, 8, 992-1003.	3.9	69
29	Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chemistry, 2015, 17, 4239-4246.	9.0	146
30	Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 2015, 17, 2784-2789.	9.0	117
31	Morphological and Chemical Characterization of Green Bamboo (Dendrocalamopsis oldhami (Munro)) Tj ETQq1 1	0.784314 1.0	⊦rggBT /Over
32	CHAPTER 1: WHAT IS BIOMASS. Materials and Energy, 2014, , 1-26.	0.1	364
33	19F NMR spectroscopy for the quantitative analysis of carbonyl groups in bio-oils. RSC Advances, 2014, 4, 17743.	3.6	24
34	Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix. Green Chemistry, 2014, 16, 3458.	9.0	17
35	Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 2014, 4, 12148.	3.6	14
36	Pretreatment Methods for Bioethanol Production. Applied Biochemistry and Biotechnology, 2014, 174, 43-62.	2.9	100

Fang Huang

#	Article	IF	CITATION
37	Dilute H ₂ SO ₄ and SO ₂ pretreatments of Loblolly pine wood residue for bioethanol production. Industrial Biotechnology, 2012, 8, 22-30.	0.8	17
38	The breakdown mechanism of earlywood and latewood in refining. Wood Science and Technology, 2012, 46, 887-904.	3.2	1
39	Influence of Jack pine earlywood and latewood fibers on paper properties. Nordic Pulp and Paper Research Journal, 2012, 27, 923-929.	0.7	0
40	Characterization of Milled Wood Lignin (MWL) in Loblolly Pine Stem Wood, Residue, and Bark. Journal of Agricultural and Food Chemistry, 2011, 59, 12910-12916.	5.2	84
41	Synthesis and characterization of cellulose fibers grafted with hyperbranched poly(3-methyl-3-oxetanemethanol). Cellulose, 2011, 18, 1611-1621.	4.9	35
42	Measurement of interfiber friction force for pulp fibers by atomic force microscopy. Journal of Materials Science, 2009, 44, 3770-3776.	3.7	27