
Fang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971262/publications.pdf Version: 2024-02-01

FANC HUANC

#	Article	IF	CITATIONS
1	CHAPTER 1: WHAT IS BIOMASS. Materials and Energy, 2014, , 1-26.	0.1	364
2	Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 2016, 18, 1306-1312.	9.0	172
3	Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chemistry, 2015, 17, 4239-4246.	9.0	146
4	Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 2015, 17, 2784-2789.	9.0	117
5	Pretreatment Methods for Bioethanol Production. Applied Biochemistry and Biotechnology, 2014, 174, 43-62.	2.9	100
6	Characterization of Milled Wood Lignin (MWL) in Loblolly Pine Stem Wood, Residue, and Bark. Journal of Agricultural and Food Chemistry, 2011, 59, 12910-12916.	5.2	84
7	Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 4563-4572.	6.7	73
8	Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Research, 2015, 8, 992-1003.	3.9	69
9	Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. Journal of Hazardous Materials, 2020, 387, 121714.	12.4	56
10	Preparation of transparent film via cellulose regeneration: Correlations between ionic liquid and film properties. Carbohydrate Polymers, 2019, 203, 214-218.	10.2	53
11	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	10.3	53
12	Preparation and Characterization of Cellulose-Based Nanofiltration Membranes by Interfacial Polymerization with Piperazine and Trimesoyl Chloride. ACS Sustainable Chemistry and Engineering, 2018, 6, 13168-13176.	6.7	46
13	Global protein expression profile response of planktonic Aeromonas hydrophila exposed to chlortetracycline. World Journal of Microbiology and Biotechnology, 2017, 33, 68.	3.6	36
14	Synthesis and characterization of cellulose fibers grafted with hyperbranched poly(3-methyl-3-oxetanemethanol). Cellulose, 2011, 18, 1611-1621.	4.9	35
15	Design of Fe ³⁺ -Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules, 2022, 23, 766-778.	5.4	32
16	Morphological and Chemical Characterization of Green Bamboo (Dendrocalamopsis oldhami (Munro)) Tj ETQq0	0 0 rgBT / 1.00	Ovgrlock 10 T
17	A cellulose-based nanofiltration membrane with a stable three-layer structure for the treatment of drinking water. Cellulose, 2020, 27, 8237-8253.	4.9	31

18Facile synthesis of reduced graphene oxide/trimethyl chlorosilaneâ€coated cellulose nanofibres3.82818aerogel for oil absorption. IET Nanobiotechnology, 2017, 11, 929-934.3.83.828

Fang Huang

#	Article	IF	CITATIONS
19	Measurement of interfiber friction force for pulp fibers by atomic force microscopy. Journal of Materials Science, 2009, 44, 3770-3776.	3.7	27
20	Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications. International Journal of Biological Macromolecules, 2021, 187, 189-199.	7.5	27
21	19F NMR spectroscopy for the quantitative analysis of carbonyl groups in bio-oils. RSC Advances, 2014, 4, 17743.	3.6	24
22	Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites. Science of the Total Environment, 2019, 664, 363-373.	8.0	24
23	Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose, 2019, 26, 4061-4069.	4.9	23
24	High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties. International Journal of Biological Macromolecules, 2022, 207, 48-61.	7.5	22
25	Conversion of Loblolly pine biomass residues to bio-oil in a two-step process: Fast pyrolysis in the presence of zeolite and catalytic hydrogenation. Industrial Crops and Products, 2020, 148, 112318.	5.2	21
26	Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. International Journal of Biological Macromolecules, 2022, 201, 104-110.	7.5	21
27	Preparation and Characterization of Various Kraft Lignins and Impact on Their Pyrolysis Behaviors. Industrial & Engineering Chemistry Research, 2020, 59, 3310-3320.	3.7	20
28	Lignin-containing hydrogels with anti-freezing, excellent water retention and super-flexibility for sensor and supercapacitor applications. International Journal of Biological Macromolecules, 2022, 214, 77-90.	7.5	18
29	Dilute H ₂ SO ₄ and SO ₂ pretreatments of Loblolly pine wood residue for bioethanol production. Industrial Biotechnology, 2012, 8, 22-30.	0.8	17
30	Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix. Green Chemistry, 2014, 16, 3458.	9.0	17
31	Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 2014, 4, 12148.	3.6	14
32	Preparation and characterization of cellulose nanofiltration membrane through hydrolysis followed by carboxymethylation. Fibers and Polymers, 2017, 18, 1235-1242.	2.1	13
33	Preparation and characterization of super hydrophobic aerogels derived from tunicate cellulose nanocrystals. Carbohydrate Research, 2022, 511, 108488.	2.3	12
34	Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application. International Journal of Biological Macromolecules, 2022, 212, 275-282.	7.5	11
35	Study on the Anti-Biodegradation Property of Tunicate Cellulose. Polymers, 2020, 12, 3071.	4.5	9
36	Synergistic effects of enzyme pretreatment for hemicellulose separation from paper-grade pulp in ionic liquid/water. Cellulose, 2018, 25, 4193-4198.	4.9	7

Fang Huang

#	Article	IF	CITATIONS
37	Effect of using regenerated combined FAU and MOR zeolites as catalysts during the pyrolysis of kraft lignin. BioResources, 2020, 16, 417-440.	1.0	6
38	Study on the effect of tunicate cellulose nanocrystals in the preparation of sodium alginate-based enteric capsule. Cellulose, 2022, 29, 2497-2511.	4.9	4
39	Effect of the particle size of magnesium hydroxide on the cellulose polymerization during the oxygen delignification of radiata pine kraft pulp. Cellulose, 2019, 26, 6571-6581.	4.9	2
40	The breakdown mechanism of earlywood and latewood in refining. Wood Science and Technology, 2012, 46, 887-904.	3.2	1
41	New Alkaloid and Aromatic Glucoside from the Flowers of Cymbidium Lunagrad Eternal Green. Molecules, 2018, 23, 99.	3.8	1
42	Influence of Jack pine earlywood and latewood fibers on paper properties. Nordic Pulp and Paper Research Journal, 2012, 27, 923-929.	0.7	0