
Paul A Wieringa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D culture platform of human iPSCs-derived nociceptors for peripheral nerve modeling and tissue innervation. Biofabrication, 2022, 14, 014105.	7.1	12
2	Universal Strategy for Designing Shape Memory Hydrogels. , 2022, 4, 701-706.		13
3	Development of an In Vitro Biomimetic Peripheral Neurovascular Platform. ACS Applied Materials & Interfaces, 2022, 14, 31567-31585.	8.0	4
4	Fabrication of hybrid scaffolds obtained from combinations of <scp>PCL</scp> with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 1600-1612.	4.0	48
5	(Macro)Molecular Imprinting of Proteins on PCL Electrospun Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29293-29302.	8.0	12
6	Peripheral neurovascular link: an overview of interactions and in vitro models. Trends in Endocrinology and Metabolism, 2021, 32, 623-638.	7.1	6
7	Decellularization of porcine heart tissue to obtain extracellular matrix based hydrogels. Methods in Cell Biology, 2020, 157, 3-21.	1.1	7
8	A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials, 2020, 257, 120230.	11.4	24
9	A One‣tep Biofunctionalization Strategy of Electrospun Scaffolds Enables Spatially Selective Presentation of Biological Cues. Advanced Materials Technologies, 2020, 5, 2000269.	5.8	3
10	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	47.7	185
11	Multivalency Enables Dynamic Supramolecular Host–Guest Hydrogel Formation. Biomacromolecules, 2020, 21, 2208-2217.	5.4	34
12	Tandem electrospinning for heterogeneous nanofiber patterns. Biofabrication, 2020, 12, 025010.	7.1	6
13	Fiber diameter, porosity and functional group gradients in electrospun scaffolds. Biomedical Materials (Bristol), 2020, 15, 045020.	3.3	8
14	Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomaterialia, 2019, 96, 188-202.	8.3	31
15	A quantitative method to analyse F-actin distribution in cells. MethodsX, 2019, 6, 2562-2569.	1.6	31
16	Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Advanced Healthcare Materials, 2018, 7, e1701164.	7.6	94
17	Nerve Repair: Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies (Adv. Healthcare Mater. 8/2018). Advanced Healthcare Materials, 2018, 7, 1870035.	7.6	6
18	Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials, 2017, 135, 10-22.	11.4	33

PAUL A WIERINGA

#	Article	IF	CITATIONS
19	PEOT/PBT Guides Enhance Nerve Regeneration in Long Gap Defects. Advanced Healthcare Materials, 2017, 6, 1600298.	7.6	45
20	Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning. Nanomaterials, 2017, 7, 16.	4.1	41
21	Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomaterials Science and Engineering, 2016, 2, 1694-1709.	5.2	25
22	Schwann cells promote endothelial cell migration. Cell Adhesion and Migration, 2015, 9, 441-451.	2.7	21
23	Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1559-1569.	3.3	59
24	An innervated skin 3D in vitro model for dermatological research. In Vitro Models, 0, , .	2.0	2