
Attilio Marino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971121/publications.pdf Version: 2024-02-01

Δττιμο Μλρινιο

#	Article	lF	CITATIONS
1	Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomaterialia, 2022, 139, 218-236.	8.3	37
2	In Vitro and Ex Vivo Investigation of the Effects of Polydopamine Nanoparticle Size on Their Antioxidant and Photothermal Properties: Implications for Biomedical Applications. ACS Applied Nano Materials, 2022, 5, 1702-1713.	5.0	26
3	Modulation of anti-angiogenic activity using ultrasound-activated nutlin-loaded piezoelectric nanovectors. Materials Today Bio, 2022, 13, 100196.	5.5	8
4	<i>In vitro</i> study of polydopamine nanoparticles as protective antioxidant agents in fibroblasts derived from ARSACS patients. Biomaterials Science, 2022, 10, 3770-3792.	5.4	10
5	Porous Optically Transparent Cellulose Acetate Scaffolds for Biomimetic Blood-Brain Barrierin vitro Models. Frontiers in Bioengineering and Biotechnology, 2021, 9, 630063.	4.1	7
6	Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano, 2021, 15, 11066-11086.	14.6	102
7	Evaluation of the therapeutic potential of resveratrol-loaded nanostructured lipid carriers on autosomal recessive spastic ataxia of Charlevoix-Saguenay patient-derived fibroblasts. Materials and Design, 2021, 209, 110012.	7.0	6
8	Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based <i>in vitro</i> model of Parkinson's disease. Biomaterials Science, 2021, 9, 8171-8188.	5.4	18
9	Advanced Functional Materials and Cellâ€Based Therapies for the Treatment of Ischemic Stroke and Postischemic Stroke Effects. Advanced Functional Materials, 2020, 30, 1906283.	14.9	23
10	Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Annals of Biomedical Engineering, 2020, 48, 734-746.	2.5	9
11	Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Advanced Healthcare Materials, 2020, 9, e1901589.	7.6	50
12	Polydopamine Nanoparticles as an Organic and Biodegradable Multitasking Tool for Neuroprotection and Remote Neuronal Stimulation. ACS Applied Materials & Interfaces, 2020, 12, 35782-35798.	8.0	58
13	ADAM22/LGI1 complex as a new actionable target for breast cancer brain metastasis. BMC Medicine, 2020, 18, 349.	5.5	8
14	Microfluidic Systems: A 3D Biohybrid Realâ€Scale Model of the Brain Cancer Microenvironment for Advanced In Vitro Testing (Adv. Mater. Technol. 10/2020). Advanced Materials Technologies, 2020, 5, 2070063.	5.8	0
15	A 3D Biohybrid Real cale Model of the Brain Cancer Microenvironment for Advanced In Vitro Testing. Advanced Materials Technologies, 2020, 5, 2000540.	5.8	31
16	Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 29037-29055.	8.0	42
17	Biointerfaces: Probing the Ultrastructure of Spheroids and Their Uptake of Magnetic Nanoparticles by FIB–SEM (Adv. Mater. Technol. 3/2020). Advanced Materials Technologies, 2020, 5, 2070015.	5.8	0
18	Editorial: Advanced Theranostic Nanomedicine in Oncology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 142.	4.1	2

Attilio Marino

#	Article	IF	CITATIONS
19	Probing the Ultrastructure of Spheroids and Their Uptake of Magnetic Nanoparticles by FIB–SEM. Advanced Materials Technologies, 2020, 5, 1900687.	5.8	7
20	Smart diagnostic nano-agents for cerebral ischemia. Journal of Materials Chemistry B, 2020, 8, 6233-6251.	5.8	10
21	Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Materials and Design, 2020, 192, 108742.	7.0	69
22	Nanomaterial-Assisted Acoustic Neural Stimulation. , 2020, , 347-363.		4
23	Cell Membraneâ€Coated Magnetic Nanocubes with a Homotypic Targeting Ability Increase Intracellular Temperature due to ROS Scavenging and Act as a Versatile Theranostic System for Glioblastoma Multiforme. Advanced Healthcare Materials, 2019, 8, e1900612.	7.6	36
24	Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale, 2019, 11, 72-88.	5.6	69
25	Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale, 2019, 11, 21227-21248.	5.6	56
26	Design, Fabrication, and In Vitro Evaluation of Nanoceria-Loaded Nanostructured Lipid Carriers for the Treatment of Neurological Diseases. ACS Biomaterials Science and Engineering, 2019, 5, 670-682.	5.2	25
27	Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. Journal of Colloid and Interface Science, 2019, 538, 449-461.	9.4	75
28	Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells. Scientific Reports, 2018, 8, 6257.	3.3	78
29	Biomedicine: A 3D Realâ€5cale, Biomimetic, and Biohybrid Model of the Bloodâ€Brain Barrier Fabricated through Twoâ€Photon Lithography (Small 6/2018). Small, 2018, 14, 1870024.	10.0	3
30	Assessment of the Effects of a Wireless Neural Stimulation Mediated by Piezoelectric Nanoparticles. Neuromethods, 2018, , 109-120.	0.3	0
31	Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2421-2432.	3.3	69
32	A 3D Real‣cale, Biomimetic, and Biohybrid Model of the Bloodâ€Brain Barrier Fabricated through Twoâ€Photon Lithography. Small, 2018, 14, 1702959.	10.0	104
33	Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. Journal of Neural Engineering, 2018, 15, 036016.	3.5	38
34	Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes. Nanomedicine, 2018, 13, 2821-2833.	3.3	14
35	Smart Inorganic Nanoparticles for Wireless Cell Stimulation. , 2018, , 189-198.		1
36	Gold Nanoshell-Mediated Remote Myotube Activation. ACS Nano, 2017, 11, 2494-2508.	14.6	69

Attilio Marino

#	Article	IF	CITATIONS
37	Piezoelectric Effects of Materials on Bio-Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 17663-17680.	8.0	87
38	Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Advanced Healthcare Materials, 2017, 6, 1700002.	7.6	36
39	A <i>Tph2</i> ^{<i>GFP</i>} Reporter Stem Cell Line To Model <i>in Vitro</i> and <i>in Vivo</i> Serotonergic Neuron Development and Function. ACS Chemical Neuroscience, 2017, 8, 1043-1052.	3.5	8
40	Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance. Nanomedicine, 2017, 12, 403-416.	3.3	49
41	Piezoelectric nanotransducers: The future of neural stimulation. Nano Today, 2017, 14, 9-12.	11.9	76
42	Chlorophyll derivatives enhance invertebrate red-light and ultraviolet phototaxis. Scientific Reports, 2017, 7, 3374.	3.3	8
43	Topographical and Electrical Stimulation of Neuronal Cells through Microwrinkled Conducting Polymer Biointerfaces. Macromolecular Bioscience, 2017, 17, 1700128.	4.1	17
44	Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 386-395.	2.4	69
45	Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine. Frontiers in Bioengineering and Biotechnology, 2017, 5, 80.	4.1	43
46	Boron nitride nanotubes in nanomedicine: historical and future perspectives. , 2016, , 201-217.		2
47	Hypergravity As a Tool for Cell Stimulation: Implications in Biomedicine. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	17
48	P(VDFâ€TrFE)/BaTiO ₃ Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SHâ€SY5Y Neuroblastoma Cells. Advanced Healthcare Materials, 2016, 5, 1808-1820.	7.6	129
49	Barium titanate nanoparticles: promising multitasking vectors in nanomedicine. Nanotechnology, 2016, 27, 232001.	2.6	78
50	Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 775-784.	2.4	34
51	Titanium dioxide nanotube arrays coated with laminin enhance C2C12 skeletal myoblast adhesion and differentiation. RSC Advances, 2016, 6, 18502-18514.	3.6	7
52	Neuronal Alignment and Outgrowth on Microwrinkled Conducting Polymer Substrates. Materials Research Society Symposia Proceedings, 2015, 1795, 13-18.	0.1	0
53	Modulation of cellular responses: The two-photon polymerization approach in the control of the physical micro/nanoenvironment. , 2015, 2015, 1865-8.		0
54	Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. International Journal of Nanomedicine, 2015, 10, 433.	6.7	32

ATTILIO MARINO

#	Article	IF	CITATIONS
55	Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Advances, 2015, 5, 45431-45438.	3.6	17
56	Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation. ACS Applied Materials & amp; Interfaces, 2015, 7, 25574-25579.	8.0	113
57	Folate-grafted boron nitride nanotubes: Possible exploitation in cancer therapy. International Journal of Pharmaceutics, 2015, 481, 56-63.	5.2	48
58	Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano, 2015, 9, 7678-7689.	14.6	236
59	A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015, 17, 46.	2.8	17
60	Deterministic control of mean alignment and elongation of neuron-like cells by grating geometry: a computational approach. Integrative Biology (United Kingdom), 2015, 7, 1242-1252.	1.3	17
61	Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale, 2015, 7, 2841-2850.	5.6	77
62	Nanostructured Brownian Surfaces Prepared through Two-Photon Polymerization: Investigation of Stem Cell Response. ACS Nano, 2014, 8, 11869-11882.	14.6	27
63	The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomaterialia, 2014, 10, 4304-4313.	8.3	92
64	Two-Photon Polymerization of Sub-micrometric Patterned Surfaces: Investigation of Cell-Substrate Interactions and Improved Differentiation of Neuron-like Cells. ACS Applied Materials & Interfaces, 2013, 5, 13012-13021.	8.0	90