
Chang C Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3971018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using continuous directed evolution to improve enzymes for plant applications. Plant Physiology, 2022, 188, 971-983.	2.3	18
2	In vivo hypermutation and continuous evolution. Nature Reviews Methods Primers, 2022, 2, .	11.8	39
3	Integrating continuous hypermutation with highâ€throughput screening for optimization of <i>cis,cis</i> â€muconic acid production in yeast. Microbial Biotechnology, 2021, 14, 2617-2626.	2.0	22
4	Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nature Chemical Biology, 2021, 17, 739-747.	3.9	42
5	Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nature Chemical Biology, 2021, 17, 1057-1064.	3.9	59
6	Evolving Small-Molecule Biosensors with Improved Performance and Reprogrammed Ligand Preference Using OrthoRep. ACS Synthetic Biology, 2021, 10, 2705-2714.	1.9	19
7	Systems for inÂvivo hypermutation: a quest for scale and depth in directed evolution. Current Opinion in Chemical Biology, 2021, 64, 20-26.	2.8	27
8	Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study. Life, 2020, 10, 179.	1.1	20
9	Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nature Communications, 2020, 11, 5644.	5.8	61
10	Automated Continuous Evolution of Proteins <i>in Vivo</i> . ACS Synthetic Biology, 2020, 9, 1270-1276.	1.9	40
11	A new path to tyrosine sulfation. Nature Chemical Biology, 2020, 16, 365-366.	3.9	1
12	Genetic Compatibility and Extensibility of Orthogonal Replication. ACS Synthetic Biology, 2019, 8, 1249-1256.	1.9	15
13	Synthetic Epigenetics To Engineer Regulation. Biochemistry, 2019, 58, 1558-1559.	1.2	0
14	Probing pathways of adaptation with continuous evolution. Current Opinion in Systems Biology, 2019, 14, 18-24.	1.3	3
15	Toward an orthogonal central dogma. Nature Chemical Biology, 2018, 14, 103-106.	3.9	119
16	Site-Specific Incorporation of Sulfotyrosine Using an Expanded Genetic Code. Methods in Molecular Biology, 2018, 1728, 191-200.	0.4	2
17	Tunable Expression Systems for Orthogonal DNA Replication. ACS Synthetic Biology, 2018, 7, 2930-2934.	1.9	24
18	Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds. Cell, 2018, 175, 1946-1957.e13.	13.5	165

CHANG C LIU

#	Article	IF	CITATIONS
19	Mutually Orthogonal DNA Replication Systems <i>In Vivo</i> . ACS Synthetic Biology, 2018, 7, 1722-1729.	1.9	25
20	Characterization of a Sulfated Anti-HIV Antibody Using an Expanded Genetic Code. Biochemistry, 2018, 57, 2903-2907.	1.2	13
21	A second-generation expression system for tyrosine-sulfated proteins and its application in crop protection. Integrative Biology (United Kingdom), 2016, 8, 542-545.	0.6	23
22	Biocontainment through Reengineered Genetic Codes. ChemBioChem, 2015, 16, 1149-1151.	1.3	16
23	The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 2015, 1, e1500245.	4.7	209
24	An orthogonal DNA replication system in yeast. Nature Chemical Biology, 2014, 10, 175-177.	3.9	99
25	Biological Applications of Expanded Genetic Codes. ChemBioChem, 2014, 15, 2335-2341.	1.3	21
26	From Biological Parts to Circuit Design. , 2013, , 63-78.		2
27	Noise Attenuation in the ON and OFF States of Biological Switches. ACS Synthetic Biology, 2013, 2, 587-593.	1.9	27
28	Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 2012, 40, 5775-5786.	6.5	87
29	An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Methods, 2012, 9, 1088-1094.	9.0	67
30	Regulation of transcription by unnatural amino acids. Nature Biotechnology, 2011, 29, 164-168.	9.4	32
31	Adding New Chemistries to the Genetic Code. Annual Review of Biochemistry, 2010, 79, 413-444.	5.0	1,530
32	The Case for RNA. Science, 2010, 330, 1185-1186.	6.0	14
33	A Genetically Encoded Direct Sensor of Antibody–Antigen Interactions. ChemBioChem, 2009, 10, 2162-2164.	1.3	23
34	Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code. Nature Protocols, 2009, 4, 1784-1789.	5.5	39
35	Evolution of Proteins with Genetically Encoded "Chemical Warheads― Journal of the American Chemical Society, 2009, 131, 9616-9617.	6.6	66
36	Mutagenesis and Evolution of Sulfated Antibodies Using an Expanded Genetic Code. Biochemistry, 2009, 48, 8891-8898.	1.2	39

CHANG C LIU

#	Article	IF	CITATIONS
37	Protein evolution with an expanded genetic code. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17688-17693.	3.3	138
38	Crystal Structure of a Biosynthetic Sulfo-hirudin Complexed to Thrombin. Journal of the American Chemical Society, 2007, 129, 10648-10649.	6.6	59
39	Recombinant expression of selectively sulfated proteins in Escherichia coli. Nature Biotechnology, 2006, 24, 1436-1440.	9.4	129
40	Stereochemical Control of the Passerini Reaction ChemInform, 2005, 36, no.	0.1	0
41	Stereochemical Control of the Passerini Reaction. Organic Letters, 2004, 6, 4231-4233.	2.4	169