
Jean V Manca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3970892/publications.pdf Version: 2024-02-01

IEAN V MANCA

#	Article	IF	CITATIONS
1	Novel cost-effective approach to produce nano-sized contact openings in an aluminum oxide passivation layer up to 30 nm thick for CIGS solar cells. Journal Physics D: Applied Physics, 2021, 54, 234004.	1.3	4
2	Long-distance electron transfer in a filamentous Gram-positive bacterium. Nature Communications, 2021, 12, 1709.	5.8	33
3	Enhanced Laterally Resolved ToF-SIMS and AFM Imaging of the Electrically Conductive Structures in Cable Bacteria. Analytical Chemistry, 2021, 93, 7226-7234.	3.2	6
4	Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Communications, 2021, 12, 3996.	5.8	32
5	Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence. Scientific Reports, 2020, 10, 19798.	1.6	17
6	An Ordered and Failâ€ S afe Electrical Network in Cable Bacteria. Advanced Biology, 2020, 4, e2000006.	3.0	26
7	A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nature Communications, 2019, 10, 4120.	5.8	91
8	A PCPDTTPD-based narrow bandgap conjugated polyelectrolyte for organic solar cells. Polymer, 2018, 137, 303-311.	1.8	7
9	The Cell Envelope Structure of Cable Bacteria. Frontiers in Microbiology, 2018, 9, 3044.	1.5	53
10	Designing Small Molecule Organic Solar Cells with High Open ircuit Voltage. ChemistrySelect, 2017, 2, 1253-1261.	0.7	12
11	Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 179-188.	3.0	35
12	High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6309-6314.	4.0	37
13	Improved efficiency of polymer-fullerene bulk heterojunction solar cells by the addition of Cu(II)-porphyrin-oligothiophene conjugates. Synthetic Metals, 2016, 218, 1-8.	2.1	2
14	A direct arylation approach towards efficient small molecule organic solar cells. Journal of Materials Chemistry A, 2016, 4, 791-795.	5.2	22
15	Continuous Flow Polymer Synthesis toward Reproducible Largeâ€5cale Production for Efficient Bulk Heterojunction Organic Solar Cells. ChemSusChem, 2015, 8, 3228-3233.	3.6	48
16	Enhanced Organic Solar Cell Stability by Polymer (PCPDTBT) Side Chain Functionalization. Chemistry of Materials, 2015, 27, 1332-1341.	3.2	70
17	Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b′]dithiophene-alt-quinoxaline) copolymers. Journal of Materials Chemistry A, 2015, 3, 2960-2970.	5.2	32
18	Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2′,3′-d]pyrrole N-acylation. Journal of Materials Chemistry A, 2014, 2, 7535-7545.	5.2	33

JEAN V MANCA

#	Article	IF	CITATIONS
19	Enhanced intrinsic stability of the bulk heterojunction active layer blend of polymer solar cells by varying the polymer side chain pattern. Organic Electronics, 2014, 15, 549-562.	1.4	39
20	Poly(3-alkylthiophene) nanofibers for optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 5730.	2.7	36
21	Investigating the role of efficiency enhancing interlayers for bulk heterojunction solar cells by scanning probe microscopy. Organic Electronics, 2014, 15, 1282-1289.	1.4	10
22	The Importance of Bridging Points for Charge Transport in Webs of Conjugated Polymer Nanofibers. Advanced Functional Materials, 2013, 23, 862-869.	7.8	28
23	Improved thermal stability of bulk heterojunctions based on side-chain functionalized poly(3-alkylthiophene) copolymers and PCBM. Solar Energy Materials and Solar Cells, 2013, 110, 69-76.	3.0	52
24	Thermally Stable Bulk Heterojunction Solar Cells Based on Cross-Linkable Acrylate-Functionalized Polythiophene Diblock Copolymers. Macromolecules, 2013, 46, 785-795.	2.2	47
25	Imidazoliumâ€Substituted Polythiophenes as Efficient Electron Transport Materials Improving Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 1180-1185.	10.2	55
26	Influence of fullerene photodimerization on the PCBM crystallization in polymer: Fullerene bulk heterojunctions under thermal stress. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1209-1214.	2.4	72
27	Fully water-processable metal oxide nanorods/polymer hybrid solar cells. Solar Energy Materials and Solar Cells, 2012, 107, 230-235.	3.0	19
28	Generalized approach to the description of recombination kinetics in bulk heterojunction solar cells—extending from fully organic to hybrid solar cells. Applied Physics Letters, 2012, 100, 203905.	1.5	8
29	Relation between Morphology and Recombination Kinetics in Nanostructured Hybrid Solar Cells. Journal of Physical Chemistry C, 2012, 116, 14237-14242.	1.5	14
30	Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4 <i>H</i> -Cyclopenta[2,1- <i>b</i> :3,4- <i>b</i> @2]dithiophene Donor and Thiazolo[5,4- <i>d</i>]thiazole Acceptor Units. Chemistry of Materials, 2012, 24, 587-593.	3.2	73
31	Tuning the Dimensions of ZnO Nanorod Arrays for Application in Hybrid Photovoltaics. ChemPhysChem, 2012, 13, 2777-2783.	1.0	14
32	Combining photovoltaics and sound barriers – A feasibility study. Renewable Energy, 2012, 46, 297-303.	4.3	29
33	Influence of Interface Morphology onto the Photovoltaic Properties of Nanopatterned ZnO/Poly(3-hexylthiophene) Hybrid Solar Cells. An Impedance Spectroscopy Study. Journal of Physical Chemistry C, 2011, 115, 16695-16700.	1.5	45
34	Effects of hole and electron trapping on organic field-effect transistor transfer characteristic. Synthetic Metals, 2011, 161, 789-793.	2.1	11
35	Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays. Advanced Materials, 2011, 23, 2802-2805.	11.1	100
36	Alkylâ€Chainâ€Lengthâ€Independent Hole Mobility via Morphological Control with Poly(3â€alkylthiophene) Nanofibers. Advanced Functional Materials, 2010, 20, 792-802.	7.8	89

JEAN V MANCA

#	Article	IF	CITATIONS
37	Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. Applied Physics Letters, 2010, 96, .	1.5	90
38	Controlling the morphology of nanofiber-P3HT:PCBM blends for organic bulk heterojunction solar cells. Organic Electronics, 2009, 10, 1248-1251.	1.4	61
39	Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. Journal of Physical Chemistry B, 2009, 113, 1587-1591.	1.2	333
40	Efficient formation, isolation and characterization of poly(3-alkylthiophene) nanofibres: probing order as a function of side-chain length. Journal of Materials Chemistry, 2009, 19, 5424.	6.7	128
41	Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 753-760.	3.0	261
42	Water based preparation method for â€~green' solid-state polythiophene solar cells. Thin Solid Films, 2008, 516, 7245-7250.	0.8	18
43	Highâ€resolution morphological and electrical characterisation of organic bulk heterojunction solar cells by scanning probe microscopy. Progress in Photovoltaics: Research and Applications, 2007, 15, 713-726.	4.4	38
44	Tuning the Dimensions of C60-Based Needlelike Crystals in Blended Thin Films. Advanced Functional Materials, 2006, 16, 760-765.	7.8	195
45	Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Frontiers in Microbiology, 0, 13, .	1.5	3