
Aradhana Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3970096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 2013, 66, 1-9.	5.8	332
2	Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp Bioresource Technology, 2014, 166, 235-242.	9.6	209
3	Physico-Chemical Condition Optimization during Biosynthesis lead to development of Improved and Catalytically Efficient Gold Nano Particles. Scientific Reports, 2016, 6, 27575.	3.3	105
4	Gene expression profiling through microarray analysis in <i>Arabidopsis thaliana</i> colonized by <i>Pseudomonas putida</i> MTCC5279, a plant growth promoting rhizobacterium. Plant Signaling and Behavior, 2012, 7, 235-245.	2.4	95
5	Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiology and Biochemistry, 2017, 121, 216-225.	5.8	80
6	Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microbial Pathogenesis, 2017, 105, 346-355.	2.9	79
7	An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide Biochemistry and Physiology, 2019, 157, 45-52.	3.6	77
8	Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environmental Pollution, 2017, 223, 137-145.	7.5	73
9	Enhanced Cellular Internalization: A Bactericidal Mechanism More Relative to Biogenic Nanoparticles than Chemical Counterparts. ACS Applied Materials & amp; Interfaces, 2017, 9, 4519-4533.	8.0	62
10	Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 2012, 62, 65-74.	3.0	57
11	Endophyte-Mediated Modulation of Defense-Related Genes and Systemic Resistance in Withania somnifera (L.) Dunal under Alternaria alternata Stress. Applied and Environmental Microbiology, 2018, 84, .	3.1	56
12	Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World Journal of Microbiology and Biotechnology, 2009, 25, 1175-1180.	3.6	42
13	Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiological Research, 2018, 212-213, 17-28.	5.3	32
14	Omics-Based Mechanistic Insight Into the Role of Bioengineered Nanoparticles for Biotic Stress Amelioration by Modulating Plant Metabolic Pathways. Frontiers in Bioengineering and Biotechnology, 2020, 8, 242.	4.1	32
15	Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.). Ecotoxicology and Environmental Safety, 2015, 117, 72-80.	6.0	31
16	Early blight disease management by herbal nanoemulsion in Solanum lycopersicum with bio-protective manner. Industrial Crops and Products, 2020, 150, 112421.	5.2	31
17	Intervention of bio-protective endophyte Bacillus tequilensis enhance physiological strength of tomato during Fusarium wilt infection. Biological Control, 2019, 139, 104074.	3.0	29
18	A Comprehensive Characterization of Simple Sequence Repeats in the Sequenced Trichoderma Genomes Provides Valuable Resources for Marker Development. Frontiers in Microbiology, 2016, 7, 575.	3.5	25

Aradhana Mishra

#	Article	IF	CITATIONS
19	Isolation and characterization of endophytic fungi having plant growth promotion traits that biosynthesizes bacosides and withanolides under in vitro conditions. Brazilian Journal of Microbiology, 2021, 52, 1791-1805.	2.0	13
20	Finding a facile way for the bacterial DNA transformation by biosynthesized gold nanoparticles. FEMS Microbiology Letters, 2017, 364, .	1.8	12
21	Supplementation of Trichoderma improves the alteration of nutrient allocation and transporter genes expression in rice under nutrient deficiencies. Plant Physiology and Biochemistry, 2019, 143, 351-363.	5.8	12
22	Effect of biosynthesized silver nanoparticles on native soil microflora via plant transport during plant–pathogen–nanoparticles interaction. 3 Biotech, 2017, 7, 345.	2.2	11
23	A Green Nano-Synthesis to Explore the Plant Microbe Interactions. , 2019, , 85-105.		11
24	Green synthesis of biogenic silver particles, process parameter optimization and application as photocatalyst in dye degradation. SN Applied Sciences, 2019, 1, 1.	2.9	11
25	Biogenic silver nanoparticles as a more efficient contrivance for wound healing acceleration than common antiseptic medicine. FEMS Microbiology Letters, 2019, 366, .	1.8	9
26	Comparative Study of the Development and Characterization of Ecofriendly Oil and Water Nanoemulsions for Improving Antifungal Activity. ACS Agricultural Science and Technology, 2021, 1, 640-654.	2.3	9
27	External Supplement of Impulsive Micromanager Trichoderma Helps in Combating CO2 Stress in Rice Grown Under FACE. Plant Molecular Biology Reporter, 2019, 37, 1-13.	1.8	7
28	Hybridization of Chitosan and Biosynthesized Silver Nanoparticles to Enhance Antimicrobial Activity against Phytopathogens in Tomato (<i>Solanum lycopersicum</i>). ACS Agricultural Science and Technology, 2022, 2, 719-733.	2.3	6
29	A novel Trichoderma fusant for enhancing nutritional value and defence activity in chickpea. Physiology and Molecular Biology of Plants, 2018, 24, 411-422.	3.1	5
30	Bacillus subtilis suppresses the charcoal rot disease by inducing defence responses and physiological attributes in soybean. Archives of Microbiology, 2022, 204, 266.	2.2	4
31	Interaction, fate and risks associated with nanomaterials as fertilizers and pesticides. , 2021, , 229-248.		2
32	Endophytic microbial interaction with legume crop for developing resistance against nutrient stress. , 2021, , 363-387.		2
33	Microbial formulation approaches in postharvest disease management. , 2021, , 279-305.		2
34	Endophytic Phytobiomes as Defense Elicitors: Current Insights and Future Prospects. , 2020, , 299-334.		0
35	Medicinal plants associated microflora as an unexplored niche of biopesticide. , 2022, , 247-259.		Ο