## Marcus Newborough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3970010/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Electrolysers for producing net-zero heat. Fuel Cells Bulletin, 2021, 2021, 16-21.                                                                              | 0.7 | 1         |
| 2  | Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020, 2020, 16-22.                                           | 0.7 | 55        |
| 3  | Incentives and legal barriers for power-to-hydrogen pathways: An internationalÂsnapshot.<br>International Journal of Hydrogen Energy, 2019, 44, 11394-11401.    | 3.8 | 58        |
| 4  | Sizing and operating power-to-gas systems to absorb excess renewable electricity. International<br>Journal of Hydrogen Energy, 2017, 42, 21635-21647.           | 3.8 | 74        |
| 5  | Power-to-gas systems for absorbing excess solar power in electricity distribution networks.<br>International Journal of Hydrogen Energy, 2016, 41, 13950-13959. | 3.8 | 100       |
| 6  | Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International Journal of Hydrogen Energy, 2016, 41, 10080-10089.                  | 3.8 | 43        |
| 7  | Hybrid hydrogen-battery systems for renewable off-grid telecom power. International Journal of<br>Hydrogen Energy, 2015, 40, 13876-13887.                       | 3.8 | 37        |
| 8  | Off-grid solar-hydrogen generation by passive electrolysis. International Journal of Hydrogen Energy,<br>2014, 39, 19855-19868.                                 | 3.8 | 24        |
| 9  | Electrolysers for mitigating wind curtailment and producing â€~green' merchant hydrogen.<br>International Journal of Hydrogen Energy, 2011, 36, 120-134.        | 3.8 | 50        |
| 10 | Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant. Applied Energy, 2010, 87, 1-15.             | 5.1 | 36        |
| 11 | Micro-generation systems and electrolysers for refuelling private bi-fuel cars at home. International<br>Journal of Hydrogen Energy, 2009, 34, 4438-4451.       | 3.8 | 7         |
| 12 | Effect of heat-saving measures on the CO2 savings attributable to micro-combined heat and power<br>(μCHP) systems in UK dwellings. Energy, 2008, 33, 601-612.   | 4.5 | 30        |
| 13 | Influencing user behaviour with energy information display systems for intelligent homes.<br>International Journal of Energy Research, 2007, 31, 56-78.         | 2.2 | 38        |
| 14 | An approach for estimating the carbon emissions associated with office lighting with a daylight contribution. Applied Energy, 2007, 84, 608-622.                | 5.1 | 71        |
| 15 | Controlling micro-CHP systems to modulate electrical load profiles. Energy, 2007, 32, 1093-1103.                                                                | 4.5 | 59        |
| 16 | Energy-use information transfer for intelligent homes: Enabling energy conservation with central and local displays. Energy and Buildings, 2007, 39, 495-503.   | 3.1 | 163       |
| 17 | Implementation and control of electrolysers to achieve high penetrations of renewable power.<br>International Journal of Hydrogen Energy, 2007, 32, 2253-2268.  | 3.8 | 43        |
| 18 | Impact of micro-combined heat-and-power systems on energy flows in the UK electricity supply industry. Energy, 2006, 31, 1804-1818.                             | 4.5 | 60        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of micro-CHP systems on domestic sector CO2 emissions. Applied Thermal Engineering, 2005, 25, 2653-2676.                                                                           | 3.0 | 135       |
| 20 | Dynamic energy-consumption indicators for domestic appliances: environment, behaviour and design.<br>Energy and Buildings, 2003, 35, 821-841.                                             | 3.1 | 405       |
| 21 | Thermal depolymerisation of poly-methyl-methacrylate using mechanically fluidised beds. Applied<br>Thermal Engineering, 2003, 23, 721-731.                                                | 3.0 | 9         |
| 22 | Thermal depolymerisation of scrap polymers. Applied Thermal Engineering, 2002, 22, 1875-1883.                                                                                             | 3.0 | 64        |
| 23 | Heat Transfer in Mechanically-Fluidized Particle Beds. Chemical Engineering Research and Design, 2002, 80, 332-334.                                                                       | 2.7 | 6         |
| 24 | Auditing energy use in cities. Energy Policy, 2001, 29, 125-134.                                                                                                                          | 4.2 | 43        |
| 25 | Thermal behaviour of phase-change slurries incorporating hydrated hydrophilic polymeric particles.<br>Experimental Thermal and Fluid Science, 2001, 25, 457-468.                          | 1.5 | 11        |
| 26 | Minimising frost growth on cold surfaces exposed to humid air by means of crosslinked hydrophilic polymeric coatings. Applied Thermal Engineering, 2000, 20, 737-758.                     | 3.0 | 66        |
| 27 | Energy performance of a low-emissivity electrically heated oven. Applied Thermal Engineering, 2000, 20, 813-830.                                                                          | 3.0 | 15        |
| 28 | Heat transfer characteristics of mechanically-stimulated particle beds. Applied Thermal Engineering, 1999, 19, 37-49.                                                                     | 3.0 | 13        |
| 29 | Demand-side management opportunities for the UK domestic sector. IET Generation, Transmission and Distribution, 1999, 146, 283.                                                           | 1.1 | 66        |
| 30 | Radiative heat transfer in low-emissivity ovens. Applied Thermal Engineering, 1998, 18, 619-641.                                                                                          | 3.0 | 12        |
| 31 | Heat transfers from a horizontal cylinder in a rectangular enclosure. Applied Energy, 1998, 61, 57-78.                                                                                    | 5.1 | 14        |
| 32 | Effects of thermal cycling on the crystallization characteristics of water within crosslinked hydro-active polymeric structures. Journal Physics D: Applied Physics, 1998, 31, 3130-3138. | 1.3 | 8         |
| 33 | The thermal behaviour of water in crosslinked hydro-active polymeric structures: crystallization of water. Journal Physics D: Applied Physics, 1998, 31, 3120-3129.                       | 1.3 | 13        |
| 34 | Electrolyser-based energy management: a means for optimising the exploitation of variable renewable-energy resources in stand-alone applications. Solar Energy, 1997, 61, 293-302.        | 2.9 | 21        |
| 35 | Energy consumption in UK households: Impact of domestic electrical appliances. Applied Energy, 1996, 54, 211-285.                                                                         | 5.1 | 128       |
| 36 | Electrolyser-based electricity management. Applied Energy, 1995, 51, 249-263.                                                                                                             | 5.1 | 13        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Intelligent rapid-response water heater for supplementing outputs from a domestic hot water store.<br>Building Services Engineering Research and Technology, 1994, 15, 141-148. | 0.9 | 0         |
| 38 | Purposeful energy education in the UK. Applied Energy, 1994, 48, 243-259.                                                                                                       | 5.1 | 19        |
| 39 | Multi-purpose mathematical model for electromagnetic-heating processes. Applied Energy, 1993, 44, 337-386.                                                                      | 5.1 | 14        |
| 40 | Primary- and secondary-level energy education in the UK. Applied Energy, 1991, 40, 119-156.                                                                                     | 5.1 | 16        |
| 41 | Energy education in the UK Problems and perspectives. Energy Policy, 1991, 19, 659-665.                                                                                         | 4.2 | 5         |
| 42 | Improving the thermal performances of domestic electric ovens. Applied Energy, 1991, 39, 263-300.                                                                               | 5.1 | 10        |
| 43 | Electronically commutated direct-current motor for driving tube-axial fans: A cost-effective design.<br>Applied Energy, 1990, 36, 167-190.                                      | 5.1 | 9         |
| 44 | Thermal performances of induction, halogen and conventional electric catering hobs. Applied Energy, 1990, 37, 37-71.                                                            | 5.1 | 8         |
| 45 | Intelligent automatic electrical-load management for networks of major domestic appliances. Applied<br>Energy, 1990, 37, 151-168.                                               | 5.1 | 17        |
| 46 | Energy-thrift opportunities for operators of â€~public houses' in the UK. Applied Energy, 1988, 31, 31-57.                                                                      | 5.1 | 3         |
| 47 | Evolution of energy-efficient food-preparation facilities. Applied Energy, 1988, 29, 83-178.                                                                                    | 5.1 | 6         |
| 48 | Effects of operative behaviours and management planning on energy consumptions in kitchens. Applied<br>Energy, 1988, 31, 205-220.                                               | 5.1 | 9         |
| 49 | Enhancing the heat-transfer performances of conventional open-topped closed-sided toasters. Applied Energy, 1988, 29, 37-55.                                                    | 5.1 | 3         |
| 50 | Automatically-controlled analyser for intererograms. Transactions of the Institute of Measurement and Control, 1988, 10, 234-239.                                               | 1.1 | 0         |
| 51 | Design improvements for the ubiquitous electric toaster. Applied Energy, 1987, 27, 1-52.                                                                                        | 5.1 | 7         |
| 52 | Relating energy-consumption and health-care concerns to diet choices. Applied Energy, 1987, 27, 169-201.                                                                        | 5.1 | 3         |
| 53 | ENERGY-CONSCIOUS DESIGN IMPROVEMENTS FOR ELECTRIC HOBS. Journal of Foodservice, 1987, 4, 233-257.                                                                               | 0.2 | 4         |
| 54 | Designs, thermal performances and other factors concerning cooking equipment and associated facilities. Applied Energy, 1985, 21, 81-222.                                       | 5.1 | 21        |

| #  | Article                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------|-----|-----------|
| 55 | Improving the thermal comfort of sedentary man. Applied Energy, 1984, 17, 283-299. | 5.1 | 2         |