Elva Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969846/publications.pdf Version: 2024-02-01

623734 610901 25 904 14 24 citations h-index g-index papers 25 25 25 1653 docs citations citing authors all docs times ranked

Εινα Πίας

#	Article	IF	CITATIONS
1	Mutually Dependent Clustering of SynDIG4/PRRT1 and AMPA Receptor Subunits GluA1 and GluA2 in Heterologous Cells and Primary Neurons. Frontiers in Molecular Neuroscience, 2022, 15, 788620.	2.9	1
2	Beyond the AMPA receptor: Diverse roles of SynDIG/PRRT brain-specific transmembrane proteins at excitatory synapses. Current Opinion in Pharmacology, 2021, 58, 76-82.	3.5	4
3	Acyl-PEGyl Exchange Gel Shift Assay for Quantitative Determination of Palmitoylation of Brain Membrane Proteins. Journal of Visualized Experiments, 2020, , .	0.3	5
4	Alternative Splicing of MXD3 and Its Regulation of MXD3 Levels in Glioblastoma. Frontiers in Molecular Biosciences, 2019, 6, 5.	3.5	10
5	SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function. Cell Reports, 2018, 22, 2246-2253.	6.4	41
6	Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA. Pediatric Research, 2017, 82, 527-535.	2.3	16
7	Whole exome sequencing reveals a functional mutation in the GAIN domain of the Bai2 receptor underlying a forward mutagenesis hyperactivity QTL. Mammalian Genome, 2017, 28, 465-475.	2.2	0
8	Distribution of the SynDIG4/prolineâ€rich transmembrane protein 1 in rat brain. Journal of Comparative Neurology, 2016, 524, 2266-2280.	1.6	18
9	Activity-Dependent Palmitoylation Controls SynDIG1 Stability, Localization, and Function. Journal of Neuroscience, 2016, 36, 7562-7568.	3.6	29
10	Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation <i>In Vivo</i> . ENeuro, 2016, 3, ENEURO.0130-16.2016.	1.9	30
11	Focus Formation: A Cell-based Assay to Determine the Oncogenic Potential of a Gene. Journal of Visualized Experiments, 2014, , .	0.3	17
12	Amylin deposition in the brain: A second amyloid in Alzheimer disease?. Annals of Neurology, 2013, 74, 517-526.	5.3	272
13	Role of MXD3 in Proliferation of DAOY Human Medulloblastoma Cells. PLoS ONE, 2012, 7, e38508.	2.5	24
14	SynDIG1 regulation of excitatory synapse maturation. Journal of Physiology, 2012, 590, 33-38.	2.9	8
15	DNA Microarrays: Sample Quality Control, Array Hybridization and Scanning. Journal of Visualized Experiments, 2011, , .	0.3	7
16	Mechanisms of excitatory synapse maturation by trans-synaptic organizing complexes. Current Opinion in Neurobiology, 2011, 21, 221-227.	4.2	31
17	Regulation of AMPA receptors by transmembrane accessory proteins. European Journal of Neuroscience, 2010, 32, 261-268.	2.6	52
18	SynDIG1 regulation of synaptic AMPA receptor targeting. Communicative and Integrative Biology, 2010, 3, 347-349.	1.4	7

Elva Diaz

#	Article	IF	CITATIONS
19	SynDIG1: An Activity-Regulated, AMPA- Receptor-Interacting Transmembrane Protein that Regulates Excitatory Synapse Development. Neuron, 2010, 65, 80-93.	8.1	128
20	From microarrays to mechanisms of brain development and function. Biochemical and Biophysical Research Communications, 2009, 385, 129-131.	2.1	13
21	One Decade Later: What has Gene Expression Profiling Told us About Neuronal Cell Types, Brain Function and Disease?. Current Genomics, 2009, 10, 318-325.	1.6	3
22	From cerebellar proliferation to tumorigenesis: New insights into the role of Mad3. Cell Cycle, 2008, 7, 423-427.	2.6	29
23	A Novel Role of the Mad Family Member Mad3 in Cerebellar Granule Neuron Precursor Proliferation. Molecular and Cellular Biology, 2007, 27, 8178-8189.	2.3	31
24	Analysis of gene expression in the developing mouse retina. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5491-5496.	7.1	44
25	Molecular Analysis of Gene Expression in the Developing Pontocerebellar Projection System. Neuron, 2002. 36. 417-434.	8.1	84