Bi-Yu Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969747/publications.pdf

Version: 2024-02-01

759233 677142 32 502 12 22 citations h-index g-index papers 32 32 32 499 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Mechanical behavior of high entropy carbide (<scp>HfTaZrTi</scp>)C and (<scp>HfTaZrNb</scp>)C under high pressure: Ab initio study. International Journal of Quantum Chemistry, 2021, 121, e26509.	2.0	6
2	Correlation between mechanical properties and valence electron concentration for NbTiZrM (M = Hf,) 7 Processing, 2021, 127, 1.	¯j ETQq0 0 2.3	0 0 rgBT /Overl 5
3	Influence of Local Lattice Distortion on Elastic Properties of Hexagonal Closeâ€Packed TiZrHf and TiZrHfSc Refractory Alloys. Physica Status Solidi (B): Basic Research, 2021, 258, 2100025.	1.5	10
4	Stacking fault energy of basal plane for hexagonal closed-packed medium entropy alloy ZrHfTi: Ab initio prediction. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	1
5	Temperature-dependent elastic properties of high entropy ceramic (ZrTaNbTi)C from self-consistent quasi-harmonic approximation. Solid State Communications, 2021, 336, 114432.	1.9	3
6	An initio study of influence of substitution of Sc with Al on intrinsic mechanical properties of hexagonal high-entropy alloys Hf0.25Ti0.25Zr0.25Sc0.25â^²xAlx (xÂâ‰Â15%). Materials Today Communications, 2021, 29, 102875.	1.9	2
7	Structural and mechanical properties of ternary MgCaSi phase: A study by density functional theory. Journal of Chemical Research, 2020, 44, 50-59.	1.3	2
8	Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and (HfTaZrNb)C from ab initio investigation. Ceramics International, 2020, 46, 15104-15112.	4.8	58
9	Thermodynamic Properties of W x (TaTiVCr) 1â^' x Highâ€Entropy(â€Like) Alloy and Influence of Tungsten Content. Physica Status Solidi (B): Basic Research, 2019, 256, 1800741.	1.5	2
10	Novel elastic evolution of carbide Mo2Ga2C under pressure: Ab initio theoretical investigation. International Journal of Modern Physics B, 2019, 33, 1950358.	2.0	1
11	Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature Highâ€Entropy Ceramics (Hf _{0.2} Zr _{0.2} Ta _{0.2} M _{0.2} Ti _{0.2})B ₂ (Mâ€‱= Nb, Mo, Cr). Physica Status Solidi (B): Basic Research, 2018, 255, 1800011.	1.5	48
12	Intrinsic point defects in ternary MgCaSi: Ab initio investigation. Journal of Materials Research, 2017, 32, 3723-3731.	2.6	3
13	Possible new metastable Mo2Ga2C and its phase transition under pressure: a density functional prediction. Journal of Materials Science, 2016, 51, 8452-8460.	3.7	8
14	First-principles study of point defects in C14 MgZn2 Laves phase. Journal of Alloys and Compounds, 2016, 654, 475-481.	5 . 5	16
15	First-Principle Calculations of the MgYA4 (AÂ=ÂCo and Ni) Phase with AuBe5-Type Structure. Acta Metallurgica Sinica (English Letters), 2015, 28, 1326-1331.	2.9	4
16	Crystal feature and electronic structure of novel mixed alanate LiCa(AlH4)3: a density functional theory investigation. RSC Advances, 2015, 5, 16439-16445.	3.6	6
17	First-principles study on mechanical properties of LaMg3 and LaCuMg2. Journal of Central South University, 2014, 21, 2136-2142.	3.0	2
18	First-Principles Investigation of Dehydrogenation on Cu-Doped MgH ₂ (001) and (110) Surfaces. Journal of Physical Chemistry C, 2014, 118, 13607-13616.	3.1	23

#	Article	IF	CITATIONS
19	Ab initio study of I2 and T2 stacking faults in C14 Laves phase MgZn2. European Physical Journal B, 2013, 86, 1.	1.5	16
20	First-principles study on the elastic properties of B′ and Q phase in Al–Mg–Si (–Cu) alloys. Physica Scripta, 2013, 87, 015601.	2.5	22
21	ã€^110〉{111} dislocation core properties in L1 ₂ Al ₃ Sc and Al ₃ Mg baron the Peierls-Nabarro model. Physica Status Solidi (B): Basic Research, 2013, 250, 1825-1831.	sed 1.5	1
22	First-principles study of (Ti5â^'xMgx)Si3 phases with the hexagonal D88 structure: Elastic properties and electronic structure. Computational Materials Science, 2012, 54, 287-292.	3.0	16
23	Mechanical properties of L1 ₂ type Al ₃ X (X = Mg, Sc, Zr) from firstâ€principles study. Physica Status Solidi (B): Basic Research, 2012, 249, 1510-1516.	1.5	23
24	Elastic properties of random L12–Al3(Sc0.5TM0.5) alloys from first-principle SQSs calculations. Journal of Materials Science, 2012, 47, 3793-3800.	3.7	7
25	ROTATIONAL ALIGNMENT OF PRODUCT MOLECULES FROM THE REACTION Ca + HClâ†'CaCl + H . Journal of Theoretical and Computational Chemistry, 2011, 10, 19-29.	1.8	5
26	Elastic properties and electronic structures of MgCe intermetallic compounds from firstâ€principles calculations. Physica Status Solidi (B): Basic Research, 2011, 248, 2097-2102.	1.5	7
27	Effects of Y and Zn atoms on the elastic properties of Mg solid solution from firstâ€principles calculations. Physica Status Solidi (B): Basic Research, 2011, 248, 2809-2815.	1.5	12
28	Elastic and electronic properties of ScMn2 from first-principles calculations. Physica B: Condensed Matter, 2010, 405, 4812-4817.	2.7	10
29	First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy. Journal of Alloys and Compounds, 2010, 506, 412-417.	5.5	135
30	Theoretical study of the CsMgH ₃ , Cs ₂ MgH ₄ and Cs ₄ Mg ₃ H ₁₀ complex hydrides from firstâ€principles. Physica Status Solidi (B): Basic Research, 2008, 245, 2749-2755.	1.5	3
31	Stability of MgO(111) Polar Surface:  Effect of the Environment. Journal of Physical Chemistry C, 2008, 112, 3327-3333.	3.1	26
32	Electronic structure and Fermi surface character of LaNiPO from first principles. Physical Review B, 2008, 77, .	3.2	19