Zhi Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3969725/zhi-zhu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 11,700 195 101 h-index g-index citations papers 208 6.35 8.4 13,355 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
195	Awake craniotomy for removal of gliomas in eloquent areas: an analysis of 21 cases <i>Brain Research Bulletin</i> , 2022 , 181, 30-30	3.9	1
194	Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells <i>Bioactive Materials</i> , 2022 , 11, 32-40	16.7	1
193	Well-Paired-Seq: A Size-Exclusion and Locally Quasi-Static Hydrodynamic Microwell Chip for Single-Cell RNA-Seq <i>Small Methods</i> , 2022 , e2200341	12.8	1
192	Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays <i>Nature Communications</i> , 2022 , 13, 2707	17.4	1
191	Visualization of PD-L1-Specific Glycosylation on Tissue Sections. <i>Analytical Chemistry</i> , 2021 , 93, 15958-7	15⁄963	2
190	Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling. <i>Lab on A Chip</i> , 2021 , 21, 4823-4830	7.2	2
189	Stimulus-Responsive Microfluidic Interface Enables Efficient Enrichment and Cytogenetic Profiling of Circulating Myeloma Cells. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 14920-14927	9.5	1
188	HUNTER-Chip: Bioinspired Hierarchically Aptamer Structure-Based Circulating Fetal Cell Isolation for Non-Invasive Prenatal Testing. <i>Analytical Chemistry</i> , 2021 , 93, 7235-7241	7.8	8
187	In situ Raman enhancement strategy for highly sensitive and quantitative lateral flow assay. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 1	4.4	1
186	Aptamer Generated by Cell-SELEX for Specific Targeting of Human Glioma Cells. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	10
185	Activation of Aptamers with Gain of Function by Small-Molecule-Clipping of Intramolecular Motifs. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6021-6028	16.4	2
184	Activation of Aptamers with Gain of Function by Small-Molecule-Clipping of Intramolecular Motifs. <i>Angewandte Chemie</i> , 2021 , 133, 6086-6093	3.6	
183	A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection. <i>Lab on A Chip</i> , 2021 , 21, 2019-2026	7.2	33
182	Highly paralleled emulsion droplets for efficient isolation, amplification, and screening of cancer biomarker binding phages. <i>Lab on A Chip</i> , 2021 , 21, 1175-1184	7.2	2
181	Selection and applications of functional nucleic acids for infectious disease detection and prevention. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 4563-4579	4.4	4
180	Sensitive, Rapid, and Automated Detection of DNA Methylation Based on Digital Microfluidics. <i>ACS Applied Materials & Detection</i> , 13, 8042-8048	9.5	7
179	Tracing Tumor-Derived Exosomal PD-L1 by Dual-Aptamer Activated Proximity-Induced Droplet Digital PCR. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7582-7586	16.4	35

(2020-2021)

1	78	Tracing Tumor-Derived Exosomal PD-L1 by Dual-Aptamer Activated Proximity-Induced Droplet Digital PCR. <i>Angewandte Chemie</i> , 2021 , 133, 7660-7664	3.6	1
1	77	Dispen-Seq: a single-microparticle dispenser based strategy towards flexible cell barcoding for single-cell RNA sequencing. <i>Science China Chemistry</i> , 2021 , 64, 650-659	7.9	1
1	.76	Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. <i>Lab on A Chip</i> , 2021 , 21, 2702-2710	7.2	2
1	75	An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. <i>Analyst, The</i> , 2021 , 146, 4473-4479	5	2
1	74	Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. <i>Science Advances</i> , 2020 , 6,	14.3	15
1	-73	A Highly Sensitive, Accurate, and Automated Single-Cell RNA Sequencing Platform with Digital Microfluidics. <i>Analytical Chemistry</i> , 2020 , 92, 8599-8606	7.8	13
1	.72	DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. <i>Science</i> , 2020 , 368, 878-881	33.3	56
1	71	Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. <i>Analytical Chemistry</i> , 2020 , 92, 9895-9900	7.8	147
1	.70	Effects of Molecular Crowding on G-Quadruplex-hemin Mediated Peroxidase Activity. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 247-253	2.2	2
1	.69	Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. <i>Lab on A Chip</i> , 2020 , 20, 1577-1585	7.2	9
1	.68	Scaling Up DNA Self-Assembly ACS Applied Bio Materials, 2020, 3, 2805-2815	4.1	7
1	.67	Homogeneous, Low-volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD-L1 for Cancer Diagnosis and Immunotherapy Response Prediction. <i>Angewandte Chemie</i> , 2020 , 132, 4830-4835	3.6	22
1	.66	Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. <i>Nature Communications</i> , 2020 , 11, 2118	17.4	19
1	.65	Highly Sensitive Minimal Residual Disease Detection by Biomimetic Multivalent Aptamer Nanoclimber Functionalized Microfluidic Chip. <i>Small</i> , 2020 , 16, e2000949	11	12
1	.64	Stimuli-Responsive Microfluidic Interface Enables Highly Efficient Capture and Release of Circulating Fetal Cells for Non-Invasive Prenatal Testing. <i>Analytical Chemistry</i> , 2020 , 92, 9281-9286	7.8	6
1	.63	Microfluidic Single-Cell Omics Analysis. <i>Small</i> , 2020 , 16, e1903905	11	33
1	.62	Homogeneous, Low-volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD-L1 for Cancer Diagnosis and Immunotherapy Response Prediction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4800-4805	16.4	62
1	.61	A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning. <i>Analytical Chemistry</i> , 2020 , 92, 3307-3314	7.8	20

160	Distance-based paper/PMMA integrated ELISA-chip for quantitative detection of immunoglobulin G. <i>Lab on A Chip</i> , 2020 , 20, 3625-3632	7.2	10
159	Efficient Isolation and Phenotypic Profiling of Circulating Hepatocellular Carcinoma Cells via a Combinatorial-Antibody-Functionalized Microfluidic Synergetic-Chip. <i>Analytical Chemistry</i> , 2020 , 92, 15	229-15	52 ⁷ 5
158	Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. <i>Science China Chemistry</i> , 2020 , 63, 1507-1514	7.9	4
157	Trends in miniaturized biosensors for point-of-care testing. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 122, 115701	14.6	58
156	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
155	Control of CRISPR-Cas9 with small molecule-activated allosteric aptamer regulating sgRNAs. <i>Chemical Communications</i> , 2019 , 55, 12223-12226	5.8	16
154	Centrifugal-Driven Droplet Generation Method with Minimal Waste for Single-Cell Whole Genome Amplification. <i>Analytical Chemistry</i> , 2019 , 91, 13611-13619	7.8	13
153	Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. <i>Analytical Chemistry</i> , 2019 , 91, 8070-8077	7.8	18
152	Catalase-linked immunosorbent pressure assay for portable quantitative analysis. <i>Analyst, The</i> , 2019 , 144, 4188-4193	5	2
151	Visual Quantitative Detection of Circulating Tumor Cells with Single-Cell Sensitivity Using a Portable Microfluidic Device. <i>Small</i> , 2019 , 15, e1804890	11	28
150	Stable Colloidosomes Formed by Self-Assembly of Colloidal Surfactant for Highly Robust Digital PCR. <i>Analytical Chemistry</i> , 2019 , 91, 6003-6011	7.8	13
149	Cancer Diagnostics: Visual Quantitative Detection of Circulating Tumor Cells with Single-Cell Sensitivity Using a Portable Microfluidic Device (Small 14/2019). <i>Small</i> , 2019 , 15, 1970075	11	
148	Innentitelbild: Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells (Angew. Chem. 8/2019). <i>Angewandte Chemie</i> , 2019 , 131, 2180-2180	3.6	2
147	Molecular Crowding Evolution for Enabling Discovery of Enthalpy-Driven Aptamers for Robust Biomedical Applications. <i>Analytical Chemistry</i> , 2019 , 91, 10879-10886	7.8	19
146	Single cell transcriptomics: moving towards multi-omics. <i>Analyst, The</i> , 2019 , 144, 3172-3189	5	25
145	Staining Traditional Colloidal Gold Test Strips with Pt Nanoshell Enables Quantitative Point-of-Care Testing with Simple and Portable Pressure Meter Readout. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 1800-1806	9.5	26
144	Recent Progress in Microfluidics-Based Biosensing. <i>Analytical Chemistry</i> , 2019 , 91, 388-404	7.8	54
143	Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2236-2240	16.4	113

142	Rapid, real-time chemiluminescent detection of DNA mutation based on digital microfluidics and pyrosequencing. <i>Biosensors and Bioelectronics</i> , 2019 , 126, 551-557	11.8	18	
141	Gas-generating reactions for point-of-care testing. <i>Analyst, The</i> , 2018 , 143, 1294-1304	5	31	
140	DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. <i>Analyst, The</i> , 2018 , 143, 2267-2275	5	13	
139	Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein. <i>Lab on A Chip</i> , 2018 , 18, 965-970	7.2	40	
138	Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. <i>Analyst, The</i> , 2018 , 143, 1679-1684	5	40	
137	Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis. <i>Analytical Chemistry</i> , 2018 , 90, 2570-2577	7.8	26	
136	Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up[lithography. <i>Royal Society Open Science</i> , 2018 , 5, 172034	3.3	16	
135	In Situ Pt Staining Method for Simple, Stable, and Sensitive Pressure-Based Bioassays. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 13390-13396	9.5	22	
134	Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics. <i>Analytical Chemistry</i> , 2018 , 90, 5224-5231	7.8	74	
133	A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8990-8996	16.4	67	
132	Integrated paper-based microfluidic devices for point-of-care testing. <i>Analytical Methods</i> , 2018 , 10, 35	67 ₃ 3581	1 52	
131	Design and synthesis of ortho-phthalaldehyde phosphoramidite for single-step, rapid, efficient and chemoselective coupling of DNA with proteins under physiological conditions. <i>Chemical Communications</i> , 2018 , 54, 9434-9437	5.8	12	
130	Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis. <i>Lab on A Chip</i> , 2018 , 18, 2749-2756	7.2	25	
129	Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 1071-1077	4.4	10	
128	Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. <i>Angewandte Chemie</i> , 2018 , 131, 2258	3.6	8	
127	An Allosteric-Probe for Detection of Alkaline Phosphatase Activity and Its Application in Immunoassay. <i>Frontiers in Chemistry</i> , 2018 , 6, 618	5	6	
126	A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. <i>Biosensors and Bioelectronics</i> , 2017 , 96, 332-338	11.8	64	
125	A portable visual detection method based on a target-responsive DNA hydrogel and color change of gold nanorods. <i>Chemical Communications</i> , 2017 , 53, 6375-6378	5.8	48	

124	Enrichment and single-cell analysis of circulating tumor cells. <i>Chemical Science</i> , 2017 , 8, 1736-1751	9.4	122
123	Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. <i>Accounts of Chemical Research</i> , 2017 , 50, 22-31	24.3	115
122	Target-responsive DNAzyme hydrogel for portable colorimetric detection of lanthanide(III) ions. <i>Science China Chemistry</i> , 2017 , 60, 293-298	7.9	21
121	Centrifugal micropipette-tip with pressure signal readout for portable quantitative detection of myoglobin. <i>Chemical Communications</i> , 2017 , 53, 11774-11777	5.8	15
120	Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 38356-38363	9.5	25
119	Isolation, Detection, and Antigen-Based Profiling of Circulating Tumor Cells Using a Size-Dictated Immunocapture Chip. <i>Angewandte Chemie</i> , 2017 , 129, 10821-10825	3.6	18
118	Isolation, Detection, and Antigen-Based Profiling of Circulating Tumor Cells Using a Size-Dictated Immunocapture Chip. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10681-10685	16.4	100
117	Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis. <i>ACS Applied Materials & Device Mat</i>	9.5	58
116	Integrating Target-Responsive Hydrogel with Pressuremeter Readout Enables Simple, Sensitive, User-Friendly, Quantitative Point-of-Care Testing. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 222.	52 ⁹ 2522.	58 ⁶⁷
115	Detection of DNA methyltransferase activity using allosteric molecular beacons. <i>Analyst, The</i> , 2016 , 141, 579-84	5	10
114	DNA-Mediated Morphological Control of Silver Nanoparticles. <i>Small</i> , 2016 , 12, 5449-5487	11	25
113	A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. <i>Chemical Communications</i> , 2016 , 52, 13377-13380	5.8	20
112	A pressure-based bioassay for the rapid, portable and quantitative detection of C-reactive protein. <i>Chemical Communications</i> , 2016 , 52, 8452-4	5.8	43
111	Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and a distance-readout microfluidic chip. <i>Lab on A Chip</i> , 2016 , 16, 3097-104	7.2	77
110	Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (DiSH-PAD) for Visual Quantitative Point-of-Care Testing. <i>Analytical Chemistry</i> , 2016 , 88, 2345-52	7.8	146
109	Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging. <i>Biosensors and Bioelectronics</i> , 2016 , 80, 1-8	11.8	29
108	Distance-based microfluidic quantitative detection methods for point-of-care testing. <i>Lab on A Chip</i> , 2016 , 16, 1139-51	7.2	113
107	Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers. <i>ACS Applied Materials & Disease Interfaces</i> , 2016 , 8, 6890-7	9.5	60

(2015-2016)

106	ntegration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (µPADs) for point-of-care testing (POCT). <i>Biosensors and Bioelectronics</i> , 2016 , 77, 537-42	11.8	80
105	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. <i>Angewandte Chemie</i> , 2016 , 128, 7609-7612	3.6	17
104	Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine. <i>Chemistry - A European Journal</i> , 2016 , 22, 9886-900	4.8	43
103	Advance in phage display technology for bioanalysis. <i>Biotechnology Journal</i> , 2016 , 11, 732-45	5.6	47
102	Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. <i>Analytical Chemistry</i> , 2016 , 88, 7828-36	7.8	63
101	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7483-6	16.4	91
100	Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. <i>Biosensors and Bioelectronics</i> , 2016 , 85, 496-	-5 <mark>1</mark> 12 ⁸	68
99	Afi-Chip: An Equipment-Free, Low-Cost, and Universal Binding Ligand Affinity Evaluation Platform. <i>Analytical Chemistry</i> , 2016 , 88, 8294-301	7.8	16
98	Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach. <i>Langmuir</i> , 2015 , 31, 7869-76	4	40
97	The Clinical Application of Aptamers: Future Challenges and Prospects 2015 , 339-352		1
96	Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. <i>ACS Applied Materials & Design Applied & Desi</i>	9.5	115
95	Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. <i>Analytical Chemistry</i> , 2015 , 87, 4941-8	7.8	50
94	A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. <i>Scientific Reports</i> , 2015 , 5, 10099	4.9	114
93	Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. <i>Analytical Chemistry</i> , 2015 , 87, 4275-82	7.8	115
92	Selection and Application of DNA Aptamer Against Oncogene Amplified in Breast Cancer 1. <i>Journal of Molecular Evolution</i> , 2015 , 81, 179-85	3.1	3
91	Translating Molecular Recognition into a Pressure Signal to enable Rapid, Sensitive, and Portable Biomedical Analysis. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10448-53	16.4	125
90	Translating Molecular Recognition into a Pressure Signal to enable Rapid, Sensitive, and Portable Biomedical Analysis. <i>Angewandte Chemie</i> , 2015 , 127, 10594-10599	3.6	11
89	Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. <i>Chemical Communications</i> , 2015 , 51, 2156-8	5.8	65

Facile and rapid generation of large-scale microcollagen gel array for long-term single-cell 3D

A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer

therapy. Angewandte Chemie - International Edition, 2014, 53, 9544-9

culture and cell proliferation heterogeneity analysis. Analytical Chemistry, 2014, 86, 2789-97

7.8

34

157

72

70	In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. <i>Analytical Chemistry</i> , 2014 , 86, 6596-603	7.8	85
69	Au@Pt Nanoparticle Encapsulated Target-Responsive Hydrogel with Volumetric Bar-Chart Chip Readout for Quantitative Point-of-Care Testing. <i>Angewandte Chemie</i> , 2014 , 126, 12711-12715	3.6	27
68	Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 125	03-7	103
67	A Multifunctional Nanomicelle for Real-Time Targeted Imaging and Precise Near-Infrared Cancer Therapy. <i>Angewandte Chemie</i> , 2014 , 126, 9698-9703	3.6	15
66	Stabilization of ssRNA on graphene oxide surface: an effective way to design highly robust RNA probes. <i>Analytical Chemistry</i> , 2013 , 85, 2269-75	7.8	61
65	Graphene oxide protected nucleic acid probes for bioanalysis and biomedicine. <i>Chemistry - A European Journal</i> , 2013 , 19, 10442-51	4.8	36
64	Single-molecule photon-fueled DNA nanoscissors for DNA cleavage based on the regulation of substrate binding affinity by azobenzene. <i>Chemical Communications</i> , 2013 , 49, 8716-8	5.8	22
63	Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. <i>Chemical Communications</i> , 2013 , 49, 7243-5	5.8	94
62	Cyclic enzymatic amplification method (CEAM) based on exonuclease III for highly sensitive bioanalysis. <i>Methods</i> , 2013 , 63, 202-11	4.6	13
61	Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. <i>Analytical Chemistry</i> , 2013 , 85, 4141-9	7.8	305
60	Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. <i>ACS Nano</i> , 2013 , 7, 2312-9	16.7	78
59	Target-responsive "sweet" hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3748-51	16.4	265
58	Photosensitizer-gold nanorod composite for targeted multimodal therapy. <i>Small</i> , 2013 , 9, 3678-84	11	95
57	An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 783-8	11.8	59
56	DNA micelle flares for intracellular mRNA imaging and gene therapy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2012-6	16.4	133
55	DNA Micelle Flares for Intracellular mRNA Imaging and Gene Therapy. <i>Angewandte Chemie</i> , 2013 , 125, 2066-2070	3.6	36
54	An exonuclease III and graphene oxide-aided assay for DNA detection. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 475-478	11.8	57
53	Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 187-94	4.4	46

52	Semiquantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. <i>Analytical Chemistry</i> , 2012 , 84, 8622-7	7.8	98
51	Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. <i>Lab on A Chip</i> , 2012 , 12, 3907-13	7.2	61
50	Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. <i>Analytical Chemistry</i> , 2012 , 84, 3599-606	7.8	104
49	Colorimetric logic gates based on aptamer-crosslinked hydrogels. <i>Chemical Communications</i> , 2012 , 48, 1248-50	5.8	82
48	Backbone modification promotes peroxidase activity of G-quadruplex-based DNAzyme. <i>Chemical Communications</i> , 2012 , 48, 8347-9	5.8	30
47	Label-free visual detection of nucleic acids in biological samples with single-base mismatch detection capability. <i>Chemical Communications</i> , 2012 , 48, 576-8	5.8	17
46	L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18908-11	16.4	145
45	In vitro selection of highly efficient G-quadruplex-based DNAzymes. <i>Analytical Chemistry</i> , 2012 , 84, 838	3 7 9©	66
44	Single-molecule force spectroscopic studies on intra- and intermolecular interactions of G-quadruplex aptamer with target Shp2 protein. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 11397-404	3.4	12
43	Molecular beacon aptamers for direct and universal quantitation of recombinant proteins from cell lysates. <i>Analytical Chemistry</i> , 2012 , 84, 8272-6	7.8	23
42	Aptamer-nanoparticle assembly for logic-based detection. <i>ACS Applied Materials & Description</i> (2012, 4, 3007-11)	9.5	59
41	A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20797-804	16.4	94
40	Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection. <i>Analytical Chemistry</i> , 2012 , 84, 350-5	7.8	59
39	Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. <i>Analytical Chemistry</i> , 2012 , 84, 5535-41	7.8	101
38	Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. <i>Chemical Communications</i> , 2012 , 48, 194-6	5.8	177
37	Selection of DNA aptamers against glioblastoma cells with high affinity and specificity. <i>PLoS ONE</i> , 2012 , 7, e42731	3.7	42
36	Identification, characterization and application of a G-quadruplex structured DNA aptamer against cancer biomarker protein anterior gradient homolog 2. <i>PLoS ONE</i> , 2012 , 7, e46393	3.7	40
35	Single-molecule emulsion PCR in microfluidic droplets. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 403, 2127-43	4.4	66

(2010-2012)

34	Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. <i>ACS Nano</i> , 2012 , 6, 5070-7	16.7	297
33	Insulin-binding aptamer-conjugated graphene oxide for insulin detection. <i>Analyst, The</i> , 2011 , 136, 4138	-40	108
32	Single-walled carbon nanotubes as optical materials for biosensing. <i>Nanoscale</i> , 2011 , 3, 1949-56	7.7	73
31	Molecular engineering of photoresponsive three-dimensional DNA nanostructures. <i>Chemical Communications</i> , 2011 , 47, 4670-2	5.8	49
30	Caged molecular beacons: controlling nucleic acid hybridization with light. <i>Chemical Communications</i> , 2011 , 47, 5708-10	5.8	32
29	Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. <i>Nanoscale</i> , 2011 , 3, 546-56	7.7	98
28	Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. <i>Langmuir</i> , 2011 , 27, 399-408	4	137
27	Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 450-3	11.8	43
26	Pyrene-Excimer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. <i>Angewandte Chemie</i> , 2011 , 123, 421-424	3.6	36
25	Self-Assembly of a Bifunctional DNA Carrier for Drug Delivery. <i>Angewandte Chemie</i> , 2011 , 123, 6222-62	2 56	4
24	Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 401-4	16.4	458
23	Self-assembly of a bifunctional DNA carrier for drug delivery. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6098-101	16.4	76
22	A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+ in aqueous media. <i>Analyst, The</i> , 2011 , 136, 1124-8	5	73
21	A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17408-10	16.4	180
20	Pyrene-assisted efficient photolysis of disulfide bonds in DNA-based molecular engineering. <i>ACS Applied Materials & DNA-based Materials & DNA-based Materials & DNA-based molecular engineering and DNA-based molecular engineering and DNA-based molecular engineering. ACS Applied Materials & DNA-based molecular engineering and DNA-based molecular engine</i>	9.5	15
19	Aptamer-target binding triggered molecular mediation of singlet oxygen generation. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 783-6	4.5	24
18	Competition-mediated pyrene-switching aptasensor: probing lysozyme in human serum with a monomer-excimer fluorescence switch. <i>Analytical Chemistry</i> , 2010 , 82, 10158-63	7.8	66
17	Single-walled carbon nanotube as an effective quencher. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 396, 73-83	4.4	98

16	Using aptamers to visualize and capture cancer cells. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 3225-33	4.4	39
15	DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. <i>Chemistry - A European Journal</i> , 2010 , 16, 3791-7	4.8	127
14	An Aptamer Cross-Linked Hydrogel as a Colorimetric Platform for Visual Detection. <i>Angewandte Chemie</i> , 2010 , 122, 1070-1074	3.6	53
13	An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1052-6	16.4	304
12	The effects of flow type on aptamer capture in differential mobility cytometry cell separations. <i>Analytica Chimica Acta</i> , 2010 , 673, 95-100	6.6	13
11	Mapping receptor density on live cells by using fluorescence correlation spectroscopy. <i>Chemistry - A European Journal</i> , 2009 , 15, 5327-36	4.8	77
10	Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. <i>Analytical Chemistry</i> , 2009 , 81, 7009-14	7.8	151
9	Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8221-6	16.4	139
8	Aptamer switch probe based on intramolecular displacement. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11268-9	16.4	257
7	Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. <i>Analytical Chemistry</i> , 2008 , 80, 7408-13	7.8	286
6	Regulation of singlet oxygen generation using single-walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10856-7	16.4	239
5	Chemical-Driven Reconfigurable Arithmetic Functionalities within a Fluorescent Tetrathiafulvalene Derivative. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16973-16983	3.8	51
4	Applications of aptamers in cancer cell biology. <i>Analytica Chimica Acta</i> , 2008 , 621, 101-8	6.6	98
3	Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8351-8	16.4	508
2	New TTF derivatives: several molecular logic gates based on their switchable fluorescent emissions. <i>New Journal of Chemistry</i> , 2007 , 31, 580	3.6	49
1	Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate,	22.9	O