Zhi Zhu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3969725/zhi-zhu-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 11,700 195 101 h-index g-index citations papers 208 6.35 8.4 13,355 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
195	Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8351-8	16.4	508
194	Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 401-4	16.4	458
193	Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. <i>Analytical Chemistry</i> , 2013 , 85, 4141-9	7.8	305
192	An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1052-6	16.4	304
191	Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. <i>ACS Nano</i> , 2012 , 6, 5070-7	16.7	297
190	Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. <i>Analytical Chemistry</i> , 2008 , 80, 7408-13	7.8	286
189	Target-responsive "sweet" hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3748-51	16.4	265
188	Aptamer switch probe based on intramolecular displacement. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11268-9	16.4	257
187	Regulation of singlet oxygen generation using single-walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10856-7	16.4	239
186	A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17408-10	16.4	180
185	Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. <i>Chemical Communications</i> , 2012 , 48, 194-6	5.8	177
184	A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9544-9	16.4	157
183	Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. <i>Analytical Chemistry</i> , 2009 , 81, 7009-14	7.8	151
182	Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. <i>Analytical Chemistry</i> , 2020 , 92, 9895-9900	7.8	147
181	Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (DiSH-PAD) for Visual Quantitative Point-of-Care Testing. <i>Analytical Chemistry</i> , 2016 , 88, 2345-52	7.8	146
180	L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18908-11	16.4	145
179	Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8221-6	16.4	139

178	Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. <i>Langmuir</i> , 2011 , 27, 399-408	4	137
177	DNA micelle flares for intracellular mRNA imaging and gene therapy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2012-6	16.4	133
176	Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead. <i>Analytical Chemistry</i> , 2014 , 86, 11434-9	7.8	128
175	DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. <i>Chemistry - A European Journal</i> , 2010 , 16, 3791-7	4.8	127
174	Translating Molecular Recognition into a Pressure Signal to enable Rapid, Sensitive, and Portable Biomedical Analysis. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10448-53	16.4	125
173	Enrichment and single-cell analysis of circulating tumor cells. <i>Chemical Science</i> , 2017 , 8, 1736-1751	9.4	122
172	Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. <i>Accounts of Chemical Research</i> , 2017 , 50, 22-31	24.3	115
171	Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. <i>ACS Applied Materials & Design Applied & </i>	9.5	115
170	Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. <i>Analytical Chemistry</i> , 2015 , 87, 4275-82	7.8	115
169	A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. <i>Scientific Reports</i> , 2015 , 5, 10099	4.9	114
168	Distance-based microfluidic quantitative detection methods for point-of-care testing. <i>Lab on A Chip</i> , 2016 , 16, 1139-51	7.2	113
167	Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2236-2240	16.4	113
166	Insulin-binding aptamer-conjugated graphene oxide for insulin detection. <i>Analyst, The</i> , 2011 , 136, 4138	-450	108
165	Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. <i>Analytical Chemistry</i> , 2012 , 84, 3599-606	7.8	104
164	Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 125	03-7	103
163	Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. <i>Analytical Chemistry</i> , 2012 , 84, 5535-41	7.8	101
162	Isolation, Detection, and Antigen-Based Profiling of Circulating Tumor Cells Using a Size-Dictated Immunocapture Chip. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10681-10685	16.4	100
161	Semiquantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. <i>Analytical Chemistry</i> , 2012 , 84, 8622-7	7.8	98

160	Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. <i>Nanoscale</i> , 2011 , 3, 546-56	7.7	98
159	Single-walled carbon nanotube as an effective quencher. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 396, 73-83	4.4	98
158	Applications of aptamers in cancer cell biology. <i>Analytica Chimica Acta</i> , 2008 , 621, 101-8	6.6	98
157	Photosensitizer-gold nanorod composite for targeted multimodal therapy. <i>Small</i> , 2013 , 9, 3678-84	11	95
156	Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. <i>Chemical Communications</i> , 2013 , 49, 7243-5	5.8	94
155	A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20797-804	16.4	94
154	In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. ACS Applied Materials & amp; Interfaces, 2014, 6, 2131-6	9.5	91
153	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7483-6	16.4	91
152	A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. <i>ACS Applied Materials & Discourse Materials & D</i>	9.5	87
151	In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. <i>Analytical Chemistry</i> , 2014 , 86, 6596-603	7.8	85
150	Colorimetric logic gates based on aptamer-crosslinked hydrogels. <i>Chemical Communications</i> , 2012 , 48, 1248-50	5.8	82
149	Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (¬PADs) for point-of-care testing (POCT). <i>Biosensors and Bioelectronics</i> , 2016, 77, 537-42	11.8	80
148	Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. <i>ACS Nano</i> , 2013 , 7, 2312-9	16.7	78
147	Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and a distance-readout microfluidic chip. <i>Lab on A Chip</i> , 2016 , 16, 3097-104	7.2	77
146	Mapping receptor density on live cells by using fluorescence correlation spectroscopy. <i>Chemistry - A European Journal</i> , 2009 , 15, 5327-36	4.8	77
145	Self-assembly of a bifunctional DNA carrier for drug delivery. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6098-101	16.4	76
144	Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics. <i>Analytical Chemistry</i> , 2018 , 90, 5224-5231	7.8	74
143	Single-walled carbon nanotubes as optical materials for biosensing. <i>Nanoscale</i> , 2011 , 3, 1949-56	7.7	73

142	A simple but highly sensitive and selective colorimetric and fluorescent probe for Cu2+ in aqueous media. <i>Analyst, The</i> , 2011 , 136, 1124-8	5	73	
141	A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: a dual-amplification strategy for sensitive and selective microRNA detection. <i>Chemical Communications</i> , 2014 , 50, 1576-8	5.8	68	
140	Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. <i>Biosensors and Bioelectronics</i> , 2016 , 85, 496	-502 ⁸	68	
139	A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8990-8996	16.4	67	
138	Integrating Target-Responsive Hydrogel with Pressuremeter Readout Enables Simple, Sensitive, User-Friendly, Quantitative Point-of-Care Testing. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 2225	52 ⁹ 2 ⁵ 22:	58 ⁶⁷	
137	In vitro selection of highly efficient G-quadruplex-based DNAzymes. <i>Analytical Chemistry</i> , 2012 , 84, 838	3 7 9©	66	
136	Single-molecule emulsion PCR in microfluidic droplets. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 403, 2127-43	4.4	66	
135	Competition-mediated pyrene-switching aptasensor: probing lysozyme in human serum with a monomer-excimer fluorescence switch. <i>Analytical Chemistry</i> , 2010 , 82, 10158-63	7.8	66	
134	Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. <i>Chemical Communications</i> , 2015 , 51, 2156-8	5.8	65	
133	A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. <i>Biosensors and Bioelectronics</i> , 2017 , 96, 332-338	11.8	64	
132	Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. <i>Analytical Chemistry</i> , 2016 , 88, 7828-36	7.8	63	
131	Homogeneous, Low-volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD-L1 for Cancer Diagnosis and Immunotherapy Response Prediction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4800-4805	16.4	62	
130	Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification. <i>Analytical Chemistry</i> , 2014 , 86, 5881-8	7.8	61	
129	Stabilization of ssRNA on graphene oxide surface: an effective way to design highly robust RNA probes. <i>Analytical Chemistry</i> , 2013 , 85, 2269-75	7.8	61	
128	Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. <i>Lab on A Chip</i> , 2012 , 12, 3907-13	7.2	61	
127	Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 6890-7	9.5	60	
126	Aptamer-nanoparticle assembly for logic-based detection. <i>ACS Applied Materials & Description</i> (1997) Aptamer-nanoparticle assembly for logic-based detection. <i>ACS Applied Materials & Description</i> (1997) Applied Materials & Description (1997) Applied M	9.5	59	
125	Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection. <i>Analytical Chemistry</i> , 2012 , 84, 350-5	7.8	59	

124	An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 783-8	11.8	59
123	Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis. <i>ACS Applied Materials & Device Mat</i>	9.5	58
122	Trends in miniaturized biosensors for point-of-care testing. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 122, 115701	14.6	58
121	An exonuclease III and graphene oxide-aided assay for DNA detection. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 475-478	11.8	57
120	DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. <i>Science</i> , 2020 , 368, 878-881	33.3	56
119	Recent Progress in Microfluidics-Based Biosensing. <i>Analytical Chemistry</i> , 2019 , 91, 388-404	7.8	54
118	An Aptamer Cross-Linked Hydrogel as a Colorimetric Platform for Visual Detection. <i>Angewandte Chemie</i> , 2010 , 122, 1070-1074	3.6	53
117	Integrated paper-based microfluidic devices for point-of-care testing. <i>Analytical Methods</i> , 2018 , 10, 35	67 ₃ 358	1 52
116	Chemical-Driven Reconfigurable Arithmetic Functionalities within a Fluorescent Tetrathiafulvalene Derivative. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16973-16983	3.8	51
115	Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. <i>Analytical Chemistry</i> , 2015 , 87, 4941-8	7.8	50
114	Molecular engineering of photoresponsive three-dimensional DNA nanostructures. <i>Chemical Communications</i> , 2011 , 47, 4670-2	5.8	49
113	New TTF derivatives: several molecular logic gates based on their switchable fluorescent emissions. <i>New Journal of Chemistry</i> , 2007 , 31, 580	3.6	49
112	A portable visual detection method based on a target-responsive DNA hydrogel and color change of gold nanorods. <i>Chemical Communications</i> , 2017 , 53, 6375-6378	5.8	48
111	Advance in phage display technology for bioanalysis. <i>Biotechnology Journal</i> , 2016 , 11, 732-45	5.6	47
110	Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 187-94	4.4	46
109	Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. <i>Biochemical and Biophysical Research Communications</i> , 2014 , 453, 681-5	3.4	45
108	Stable DNA Nanomachine Based on Duplex-Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells. <i>Analytical Chemistry</i> , 2015 , 87, 5854-9	7.8	45
107	A pressure-based bioassay for the rapid, portable and quantitative detection of C-reactive protein. <i>Chemical Communications</i> , 2016 , 52, 8452-4	5.8	43

(2020-2011)

106	Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 450-3	11.8	43	
105	Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine. <i>Chemistry - A European Journal</i> , 2016 , 22, 9886-900	4.8	43	
104	Selection of DNA aptamers against glioblastoma cells with high affinity and specificity. <i>PLoS ONE</i> , 2012 , 7, e42731	3.7	42	
103	Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach. <i>Langmuir</i> , 2015 , 31, 7869-76	4	40	
102	Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein. <i>Lab on A Chip</i> , 2018 , 18, 965-970	7.2	40	
101	Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. <i>Analyst, The</i> , 2018 , 143, 1679-1684	5	40	
100	A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. <i>Biomicrofluidics</i> , 2014 , 8, 014110	3.2	40	
99	Identification, characterization and application of a G-quadruplex structured DNA aptamer against cancer biomarker protein anterior gradient homolog 2. <i>PLoS ONE</i> , 2012 , 7, e46393	3.7	40	
98	Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 16800-7	9.5	39	
97	Using aptamers to visualize and capture cancer cells. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 397, 3225-33	4.4	39	
96	Graphene oxide protected nucleic acid probes for bioanalysis and biomedicine. <i>Chemistry - A European Journal</i> , 2013 , 19, 10442-51	4.8	36	
95	DNA Micelle Flares for Intracellular mRNA Imaging and Gene Therapy. <i>Angewandte Chemie</i> , 2013 , 125, 2066-2070	3.6	36	
94	Pyrene-Excimer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. <i>Angewandte Chemie</i> , 2011 , 123, 421-424	3.6	36	
93	Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. <i>Chemical Communications</i> , 2014 , 50, 7646-8	5.8	35	
92	Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise. <i>Analytical Chemistry</i> , 2014 , 86, 6758-62	7.8	35	
91	Tracing Tumor-Derived Exosomal PD-L1 by Dual-Aptamer Activated Proximity-Induced Droplet Digital PCR. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7582-7586	16.4	35	
90	Facile and rapid generation of large-scale microcollagen gel array for long-term single-cell 3D culture and cell proliferation heterogeneity analysis. <i>Analytical Chemistry</i> , 2014 , 86, 2789-97	7.8	34	
89	Microfluidic Single-Cell Omics Analysis. <i>Small</i> , 2020 , 16, e1903905	11	33	

88	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
87	A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection. <i>Lab on A Chip</i> , 2021 , 21, 2019-2026	7.2	33
86	Caged molecular beacons: controlling nucleic acid hybridization with light. <i>Chemical Communications</i> , 2011 , 47, 5708-10	5.8	32
85	Gas-generating reactions for point-of-care testing. <i>Analyst, The</i> , 2018 , 143, 1294-1304	5	31
84	Microfluidic approaches to rapid and efficient aptamer selection. <i>Biomicrofluidics</i> , 2014 , 8, 041501	3.2	30
83	Backbone modification promotes peroxidase activity of G-quadruplex-based DNAzyme. <i>Chemical Communications</i> , 2012 , 48, 8347-9	5.8	30
82	Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging. <i>Biosensors and Bioelectronics</i> , 2016 , 80, 1-8	11.8	29
81	Visual Quantitative Detection of Circulating Tumor Cells with Single-Cell Sensitivity Using a Portable Microfluidic Device. <i>Small</i> , 2019 , 15, e1804890	11	28
80	Au@Pt Nanoparticle Encapsulated Target-Responsive Hydrogel with Volumetric Bar-Chart Chip Readout for Quantitative Point-of-Care Testing. <i>Angewandte Chemie</i> , 2014 , 126, 12711-12715	3.6	27
79	Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis. <i>Analytical Chemistry</i> , 2018 , 90, 2570-2577	7.8	26
78	Staining Traditional Colloidal Gold Test Strips with Pt Nanoshell Enables Quantitative Point-of-Care Testing with Simple and Portable Pressure Meter Readout. <i>ACS Applied Materials & Company (Natural Strips)</i> 11, 1800-1806	9.5	26
77	Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2017 , 9, 38356-38363	9.5	25
76	DNA-Mediated Morphological Control of Silver Nanoparticles. <i>Small</i> , 2016 , 12, 5449-5487	11	25
75	Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis. <i>Lab on A Chip</i> , 2018 , 18, 2749-2756	7.2	25
74	Single cell transcriptomics: moving towards multi-omics. <i>Analyst, The</i> , 2019 , 144, 3172-3189	5	25
73	Aptamer-target binding triggered molecular mediation of singlet oxygen generation. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 783-6	4.5	24
72	A label-free fluorescence strategy for sensitive detection of ATP based on the ligation-triggered super-sandwich. <i>Biosensors and Bioelectronics</i> , 2015 , 63, 562-565	11.8	23
71	Molecular beacon aptamers for direct and universal quantitation of recombinant proteins from cell lysates. <i>Analytical Chemistry</i> , 2012 , 84, 8272-6	7.8	23

(2017-2020)

70	Homogeneous, Low-volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD-L1 for Cancer Diagnosis and Immunotherapy Response Prediction. <i>Angewandte Chemie</i> , 2020 , 132, 4830-4835	3.6	22
69	In Situ Pt Staining Method for Simple, Stable, and Sensitive Pressure-Based Bioassays. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 13390-13396	9.5	22
68	Single-molecule photon-fueled DNA nanoscissors for DNA cleavage based on the regulation of substrate binding affinity by azobenzene. <i>Chemical Communications</i> , 2013 , 49, 8716-8	5.8	22
67	Target-responsive DNAzyme hydrogel for portable colorimetric detection of lanthanide(III) ions. <i>Science China Chemistry</i> , 2017 , 60, 293-298	7.9	21
66	A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. <i>Chemical Communications</i> , 2016 , 52, 13377-13380	5.8	20
65	A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning. <i>Analytical Chemistry</i> , 2020 , 92, 3307-3314	7.8	20
64	Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. <i>Nature Communications</i> , 2020 , 11, 2118	17.4	19
63	Molecular Crowding Evolution for Enabling Discovery of Enthalpy-Driven Aptamers for Robust Biomedical Applications. <i>Analytical Chemistry</i> , 2019 , 91, 10879-10886	7.8	19
62	Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. <i>Analytical Chemistry</i> , 2019 , 91, 8070-8077	7.8	18
61	A diazirine-based photoaffinity probe for facile and efficient aptamer-protein covalent conjugation. <i>Chemical Communications</i> , 2014 , 50, 4891-4	5.8	18
60	Isolation, Detection, and Antigen-Based Profiling of Circulating Tumor Cells Using a Size-Dictated Immunocapture Chip. <i>Angewandte Chemie</i> , 2017 , 129, 10821-10825	3.6	18
59	Rapid, real-time chemiluminescent detection of DNA mutation based on digital microfluidics and pyrosequencing. <i>Biosensors and Bioelectronics</i> , 2019 , 126, 551-557	11.8	18
58	Label-free visual detection of nucleic acids in biological samples with single-base mismatch detection capability. <i>Chemical Communications</i> , 2012 , 48, 576-8	5.8	17
57	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. <i>Angewandte Chemie</i> , 2016 , 128, 7609-7612	3.6	17
56	Control of CRISPR-Cas9 with small molecule-activated allosteric aptamer regulating sgRNAs. <i>Chemical Communications</i> , 2019 , 55, 12223-12226	5.8	16
55	Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up[lithography. <i>Royal Society Open Science</i> , 2018 , 5, 172034	3.3	16
54	Afi-Chip: An Equipment-Free, Low-Cost, and Universal Binding Ligand Affinity Evaluation Platform. <i>Analytical Chemistry</i> , 2016 , 88, 8294-301	7.8	16
53	Centrifugal micropipette-tip with pressure signal readout for portable quantitative detection of myoglobin. <i>Chemical Communications</i> , 2017 , 53, 11774-11777	5.8	15

52	Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. <i>Science Advances</i> , 2020 , 6,	14.3	15
51	A Multifunctional Nanomicelle for Real-Time Targeted Imaging and Precise Near-Infrared Cancer Therapy. <i>Angewandte Chemie</i> , 2014 , 126, 9698-9703	3.6	15
50	Pyrene-assisted efficient photolysis of disulfide bonds in DNA-based molecular engineering. <i>ACS Applied Materials & DNA-based Materials & DNA-based Materials & DNA-based Materials & DNA-based molecular engineering. ACS Applied Materials & DNA-based molecular engineering.</i>	9.5	15
49	Centrifugal-Driven Droplet Generation Method with Minimal Waste for Single-Cell Whole Genome Amplification. <i>Analytical Chemistry</i> , 2019 , 91, 13611-13619	7.8	13
48	Stable Colloidosomes Formed by Self-Assembly of Colloidal Surfactant for Highly Robust Digital PCR. <i>Analytical Chemistry</i> , 2019 , 91, 6003-6011	7.8	13
47	A Highly Sensitive, Accurate, and Automated Single-Cell RNA Sequencing Platform with Digital Microfluidics. <i>Analytical Chemistry</i> , 2020 , 92, 8599-8606	7.8	13
46	DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. <i>Analyst, The</i> , 2018 , 143, 2267-2275	5	13
45	Cyclic enzymatic amplification method (CEAM) based on exonuclease III for highly sensitive bioanalysis. <i>Methods</i> , 2013 , 63, 202-11	4.6	13
44	The effects of flow type on aptamer capture in differential mobility cytometry cell separations. <i>Analytica Chimica Acta</i> , 2010 , 673, 95-100	6.6	13
43	Highly Sensitive Minimal Residual Disease Detection by Biomimetic Multivalent Aptamer Nanoclimber Functionalized Microfluidic Chip. <i>Small</i> , 2020 , 16, e2000949	11	12
42	Design and synthesis of ortho-phthalaldehyde phosphoramidite for single-step, rapid, efficient and chemoselective coupling of DNA with proteins under physiological conditions. <i>Chemical Communications</i> , 2018 , 54, 9434-9437	5.8	12
41	Trifluoromethylated Nucleic Acid Analogues Capable of Self-Assembly through Hydrophobic Interactions. <i>Chemical Science</i> , 2014 , 5, 4076-4081	9.4	12
40	Single-molecule force spectroscopic studies on intra- and intermolecular interactions of G-quadruplex aptamer with target Shp2 protein. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 11397-404	3.4	12
39	Translating Molecular Recognition into a Pressure Signal to enable Rapid, Sensitive, and Portable Biomedical Analysis. <i>Angewandte Chemie</i> , 2015 , 127, 10594-10599	3.6	11
38	Detection of DNA methyltransferase activity using allosteric molecular beacons. <i>Analyst, The</i> , 2016 , 141, 579-84	5	10
37	Distance-based paper/PMMA integrated ELISA-chip for quantitative detection of immunoglobulin G. <i>Lab on A Chip</i> , 2020 , 20, 3625-3632	7.2	10
36	Aptamer Generated by Cell-SELEX for Specific Targeting of Human Glioma Cells. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	10
35	Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 1071-1077	4.4	10

(2021-2020)

34	Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. <i>Lab on A Chip</i> , 2020 , 20, 1577-1585	7.2	9
33	HUNTER-Chip: Bioinspired Hierarchically Aptamer Structure-Based Circulating Fetal Cell Isolation for Non-Invasive Prenatal Testing. <i>Analytical Chemistry</i> , 2021 , 93, 7235-7241	7.8	8
32	Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. <i>Angewandte Chemie</i> , 2018 , 131, 2258	3.6	8
31	Scaling Up DNA Self-Assembly ACS Applied Bio Materials, 2020 , 3, 2805-2815	4.1	7
30	Efficient Isolation and Phenotypic Profiling of Circulating Hepatocellular Carcinoma Cells via a Combinatorial-Antibody-Functionalized Microfluidic Synergetic-Chip. <i>Analytical Chemistry</i> , 2020 , 92, 157	2 7 9 ⁸ -15	235
29	Sensitive, Rapid, and Automated Detection of DNA Methylation Based on Digital Microfluidics. <i>ACS Applied Materials & Digital Microfluidics</i> , 2021, 13, 8042-8048	9.5	7
28	Stimuli-Responsive Microfluidic Interface Enables Highly Efficient Capture and Release of Circulating Fetal Cells for Non-Invasive Prenatal Testing. <i>Analytical Chemistry</i> , 2020 , 92, 9281-9286	7.8	6
27	An Allosteric-Probe for Detection of Alkaline Phosphatase Activity and Its Application in Immunoassay. <i>Frontiers in Chemistry</i> , 2018 , 6, 618	5	6
26	Self-Assembly of a Bifunctional DNA Carrier for Drug Delivery. <i>Angewandte Chemie</i> , 2011 , 123, 6222-62	2 56	4
25	Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. <i>Science China Chemistry</i> , 2020 , 63, 1507-1514	7.9	4
24	Selection and applications of functional nucleic acids for infectious disease detection and prevention. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 4563-4579	4.4	4
23	Selection and Application of DNA Aptamer Against Oncogene Amplified in Breast Cancer 1. <i>Journal of Molecular Evolution</i> , 2015 , 81, 179-85	3.1	3
22	Catalase-linked immunosorbent pressure assay for portable quantitative analysis. <i>Analyst, The</i> , 2019 , 144, 4188-4193	5	2
21	Innentitelbild: Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells (Angew. Chem. 8/2019). <i>Angewandte Chemie</i> , 2019 , 131, 2180-2180	3.6	2
20	Effects of Molecular Crowding on G-Quadruplex-hemin Mediated Peroxidase Activity. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 247-253	2.2	2
19	Visualization of PD-L1-Specific Glycosylation on Tissue Sections. <i>Analytical Chemistry</i> , 2021 , 93, 15958-1	5 , 9 .6 3	2
18	Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling. <i>Lab on A Chip</i> , 2021 , 21, 4823-4830	7.2	2
17	Activation of Aptamers with Gain of Function by Small-Molecule-Clipping of Intramolecular Motifs. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6021-6028	16.4	2

16	Highly paralleled emulsion droplets for efficient isolation, amplification, and screening of cancer biomarker binding phages. <i>Lab on A Chip</i> , 2021 , 21, 1175-1184	7.2	2
15	Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. <i>Lab on A Chip</i> , 2021 , 21, 2702-2710	7.2	2
14	An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. <i>Analyst, The</i> , 2021 , 146, 4473-4479	5	2
13	The Clinical Application of Aptamers: Future Challenges and Prospects 2015 , 339-352		1
12	Awake craniotomy for removal of gliomas in eloquent areas: an analysis of 21 cases <i>Brain Research Bulletin</i> , 2022 , 181, 30-30	3.9	1
11	Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells <i>Bioactive Materials</i> , 2022 , 11, 32-40	16.7	1
10	Stimulus-Responsive Microfluidic Interface Enables Efficient Enrichment and Cytogenetic Profiling of Circulating Myeloma Cells. <i>ACS Applied Materials & District Materials & Company States & Materials & Materia</i>	9.5	1
9	In situ Raman enhancement strategy for highly sensitive and quantitative lateral flow assay. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 1	4.4	1
8	Tracing Tumor-Derived Exosomal PD-L1 by Dual-Aptamer Activated Proximity-Induced Droplet Digital PCR. <i>Angewandte Chemie</i> , 2021 , 133, 7660-7664	3.6	1
7	Dispen-Seq: a single-microparticle dispenser based strategy towards flexible cell barcoding for single-cell RNA sequencing. <i>Science China Chemistry</i> , 2021 , 64, 650-659	7.9	1
6	Well-Paired-Seq: A Size-Exclusion and Locally Quasi-Static Hydrodynamic Microwell Chip for Single-Cell RNA-Seq <i>Small Methods</i> , 2022 , e2200341	12.8	1
5	Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays <i>Nature Communications</i> , 2022 , 13, 2707	17.4	1
4	Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate,	22.9	0
3	Cancer Diagnostics: Visual Quantitative Detection of Circulating Tumor Cells with Single-Cell Sensitivity Using a Portable Microfluidic Device (Small 14/2019). <i>Small</i> , 2019 , 15, 1970075	11	
2	Using Cell-Specific Aptamer-Nanomaterial Conjugates for Cancer Cell Detection 2015, 215-237		
1	Activation of Aptamers with Gain of Function by Small-Molecule-Clipping of Intramolecular Motifs. Angewandte Chemie, 2021, 133, 6086-6093	3.6	