
Clinton S Potter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969550/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadening access to cryoEM through centralized facilities. Trends in Biochemical Sciences, 2022, 47, 106-116.	3.7	9
2	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Review of Biochemistry, 2022, 91, 1-32.	5.0	45
3	Waffle Method: A general and flexible approach for improving throughput in FIB-milling. Nature Communications, 2022, 13, 1857.	5.8	43
4	Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition. Nature Communications, 2022, 13, 1833.	5.8	4
5	Leginon: New features and applications. Protein Science, 2021, 30, 136-150.	3.1	77
6	Symmetric activation and modulation of the human calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
7	FACT caught in the act of manipulating the nucleosome. Nature, 2020, 577, 426-431.	13.7	160
8	Optimizing Self-wicking Grids for Chameleon. Microscopy and Microanalysis, 2020, 26, 334-335.	0.2	0
9	Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Molecular Cell, 2020, 78, 683-699.e11.	4.5	27
10	Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nature Communications, 2020, 11, 3396.	5.8	14
11	Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Reports, 2020, 30, 2655-2671.e7.	2.9	35
12	Spotiton and Chameleon Vitrification robots. Microscopy and Microanalysis, 2019, 25, 1010-1011.	0.2	5
13	Best Practices at the National Center for CryoEM Access and Training. Microscopy and Microanalysis, 2019, 25, 2662-2663.	0.2	1
14	Scorpion: Facilitating High Throughput Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1002-1003.	0.2	1
15	Strategies for Data Flow and Storage for High Throughput, High Resolution Cryo-EM Data Collection. Microscopy and Microanalysis, 2019, 25, 1394-1395.	0.2	0
16	Reducing cryoEM file storage using lossy image formats. Journal of Structural Biology, 2019, 207, 49-55.	1.3	8
17	Engineering the PP7 Virus Capsid as a Peptide Display Platform. ACS Nano, 2019, 13, 4443-4454.	7.3	40
18	Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 2019, 576, 315-320.	13.7	123

CLINTON S POTTER

#	Article	IF	CITATIONS
19	Structure of the insulin receptor–insulin complex by single-particle cryo-EM analysis. Nature, 2018, 556, 122-125.	13.7	184
20	Optimizing "self-wicking―nanowire grids. Journal of Structural Biology, 2018, 202, 170-174.	1.3	88
21	Spotiton: New features and applications. Journal of Structural Biology, 2018, 202, 161-169.	1.3	140
22	Big data in cryoEM: automated collection, processing and accessibility of EM data. Current Opinion in Microbiology, 2018, 43, 1-8.	2.3	45
23	Self-Wicking Nanowire Grids. Microscopy and Microanalysis, 2018, 24, 906-907.	0.2	0
24	Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nature Methods, 2018, 15, 793-795.	9.0	167
25	Routine Determination of Ice Thickness by Energy Filtration. Microscopy and Microanalysis, 2018, 24, 898-899.	0.2	0
26	Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. ELife, 2018, 7, .	2.8	45
27	High resolution single particle cryo-electron microscopy using beam-image shift. Journal of Structural Biology, 2018, 204, 270-275.	1.3	115
28	Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Neuron, 2018, 99, 480-492.e5.	3.8	43
29	Benchmarking cryo-EM Single Particle Analysis Workflow. Frontiers in Molecular Biosciences, 2018, 5, 50.	1.6	34
30	Routine determination of ice thickness for cryo-EM grids. Journal of Structural Biology, 2018, 204, 38-44.	1.3	114
31	Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chemical Biology, 2018, 25, 1318-1325.	2.5	63
32	Routine single particle CryoEM sample and grid characterization by tomography. ELife, 2018, 7, .	2.8	216
33	Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nature Methods, 2017, 14, 793-796.	9.0	708
34	Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell, 2016, 167, 1610-1622.e15.	13.5	163
35	Automated data collection in single particle electron microscopy. Microscopy (Oxford, England), 2016, 65, 43-56.	0.7	48
36	2.8 Ã resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. ELife, 2015, 4, .	2.8	156

CLINTON S POTTER

#	Article	IF	CITATIONS
37	Optimod – An automated approach for constructing and optimizing initial models for single-particle electron microscopy. Journal of Structural Biology, 2013, 184, 417-426.	1.3	22
38	Appion: An integrated, database-driven pipeline to facilitate EM image processing. Journal of Structural Biology, 2009, 166, 95-102.	1.3	848
39	Fully automated, sequential tilt-series acquisition with Leginon. Journal of Structural Biology, 2009, 167, 11-18.	1.3	180
40	Automated molecular microscopy: The new Leginon system. Journal of Structural Biology, 2005, 151, 41-60.	1.3	1,608
41	Laboratory Design for High-Performance Electron Microscopy. Microscopy Today, 2004, 12, 8-17.	0.2	12