
Jiafeng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/396954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convex Optimization of Mutual Inductance Between Multiantiparallel Coils for Distance-Insensitive Wireless Charging of Air–Ground Robots. IEEE Internet of Things Journal, 2022, 9, 10705-10717.	8.7	2
2	Metamaterials and Metasurfaces for Wireless Power Transfer and Energy Harvesting. Proceedings of the IEEE, 2022, 110, 31-55.	21.3	43
3	An Approach to Improve the Misalignment and Wireless Power Transfer into Biomedical Implants Using Meandered Wearable Loop Antenna. Wireless Power Transfer, 2021, 2021, 1-12.	1.1	9
4	Research on Rainfall Monitoring Based on E-Band Millimeter Wave Link in East China. Sensors, 2021, 21, 1670.	3.8	8
5	Range-Adaptive Wireless Power Transfer Based on Differential Coupling Using Multiple Bidirectional Coils. IEEE Transactions on Industrial Electronics, 2020, 67, 7519-7528.	7.9	31
6	Wavevector and Frequency Multiplexing Performed by a Spinâ€Decoupled Multichannel Metasurface. Advanced Materials Technologies, 2020, 5, 1900710.	5.8	87
7	Multiplexed Metasurfaces: Wavevector and Frequency Multiplexing Performed by a Spinâ€Decoupled Multichannel Metasurface (Adv. Mater. Technol. 1/2020). Advanced Materials Technologies, 2020, 5, 2070005.	5.8	7
8	A Novel Quartz Clock With Integrated Wireless Energy Harvesting and Sensing Functions. IEEE Transactions on Industrial Electronics, 2019, 66, 4042-4053.	7.9	32
9	Lightweight and Low-Loss 3-D Printed Millimeter-Wave Bandpass Filter Based on Gap-Waveguide. IEEE Access, 2019, 7, 2624-2632.	4.2	26
10	A 2.45-GHz Rectifier-Booster Regulator With Impedance Matching Converters for Wireless Energy Harvesting. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 3833-3843.	4.6	33
11	RF Rectifier with High Efficiency over a Wide Input Power Range Using a Voltage Controlled Switch in a â€~Handover' Fashion. , 2019, , .		0
12	A Horst-Type Power Divider With Wide Frequency Tuning Range Using Varactors. IEEE Access, 2019, 7, 4267-4274.	4.2	2
13	Design of a Broadband Wilkinson Power Divider With Wide Range Tunable Bandwidths by Adding a Pair of Capacitors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 567-571.	3.0	29
14	Design of Multioctave High-Efficiency Power Amplifiers Using Stochastic Reduced Order Models. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1015-1023.	4.6	22
15	Novel Compact and Broadband Frequency-Selectable Rectennas for a Wide Input-Power and Load Impedance Range. IEEE Transactions on Antennas and Propagation, 2018, 66, 3306-3316.	5.1	75
16	A Novel Rectenna Array with RBR for Long-Distance WLAN Energy Harvesting System. , 2018, , .		2
17	A Miniaturized and High Gain Double-Slot Vivaldi Antenna Using Wideband Index-Near-Zero Metasurface. IEEE Access, 2018, 6, 72015-72024.	4.2	19

A dual-band Quasi-Yagi wearable antenna with high directivity. , 2018, , .

JIAFENG ZHOU

#	Article	IF	CITATIONS
19	A high-efficiency radio frequency rectifier-booster regulator for ambient WLAN energy harvesting applications. , 2018, , .		10
20	Improved Ultrawideband Rectennas Using Hybrid Resistance Compression Technique. IEEE Transactions on Antennas and Propagation, 2017, 65, 2057-2062.	5.1	60
21	A Miniaturized Low-Profile Multilayer Frequency-Selective Surface Insensitive to Surrounding Dielectric Materials. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4851-4860.	4.6	17
22	Recent advances in broadband rectennas for wireless power transfer and ambient RF energy harvesting. , 2017, , .		11
23	Numerical Analysis of a Transmission Line Illuminated by a Random Plane-Wave Field Using Stochastic Reduced Order Models. IEEE Access, 2017, 5, 8741-8751.	4.2	12
24	Frequency Selective Surface Structure Miniaturization Using Interconnected Array Elements on Orthogonal Layers. IEEE Transactions on Antennas and Propagation, 2017, 65, 2376-2385.	5.1	20
25	A novel compact and frequency-tunable rectenna for wireless energy harvesting. , 2017, , .		3
26	A multi-band high selectivity frequency selective surface for ka-band applications. , 2017, , .		2
27	Uncertainty Quantification of Crosstalk Using Stochastic Reduced Order Models. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 228-239.	2.2	38
28	A High-Efficiency Helical Core for Magnetic Field Energy Harvesting. IEEE Transactions on Power Electronics, 2017, 32, 5365-5376.	7.9	65
29	Distributed matching network design for broadband power amplifiers. , 2017, , .		1
30	A Low-profile Miniaturized Second-Order Bandpass Frequency Selective Surface. IEEE Antennas and Wireless Propagation Letters, 2017, , 1-1.	4.0	49
31	Sensitivity analysis of cable crosstalk to uncertain parameters using stochastic reduced order models. , 2016, , .		3
32	Average Absorption Coefficient Measurement of Arbitrarily Shaped Electrically Large Objects in a Reverberation Chamber. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 1776-1779.	2.2	7
33	Feasibility Study of Using the Housing Cases of Implantable Devices as Antennas. IEEE Access, 2016, 4, 6939-6949.	4.2	14
34	Design of a broadband high efficiency GaN power amplifier for GNSS applications. , 2016, , .		8
35	A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting. IEEE Transactions on Antennas and Propagation, 2015, 63, 3486-3495.	5.1	367
36	Magnetic Field Energy Harvesting Under Overhead Power Lines. IEEE Transactions on Power Electronics, 2015, 30, 6191-6202.	7.9	126

#	Article	IF	CITATIONS
37	Crosstalk variations caused by uncertainties in three-conductor transmission lines. , 2015, , .		3
38	A dual broadband butterfly loop antenna for body wearable applications. , 2015, , .		0
39	Superconducting microstrip filters using compact resonators with double-spiral inductors and interdigital capacitors. , 0, , .		13
40	Superconducting filters for radio astronomy. , 0, , .		3