
Anneli Nordqvist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/396949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Translational Medicine, 2020, 9, 47-60.	3.3	21
2	Protease-activated receptor-2 ligands reveal orthosteric and allosteric mechanisms of receptor inhibition. Communications Biology, 2020, 3, 782.	4.4	15
3	Mineralocorticoid Receptor Antagonists. Vitamins and Hormones, 2019, 109, 151-188.	1.7	5
4	Neuropeptide 26RFa (QRFP) is a key regulator of glucose homeostasis and its activity is markedly altered in obese/hyperglycemic mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E147-E157.	3.5	13
5	Identification of Mineralocorticoid Receptor Modulators with Low Impact on Electrolyte Homeostasis but Maintained Organ Protection. Journal of Medicinal Chemistry, 2019, 62, 1385-1406.	6.4	15
6	Structural Characterization of Agonist Binding to Protease-Activated Receptor 2 through Mutagenesis and Computational Modeling. ACS Pharmacology and Translational Science, 2018, 1, 119-133.	4.9	9
7	Structureâ€Based Drug Design of Mineralocorticoid Receptor Antagonists to Explore Oxosteroid Receptor Selectivity. ChemMedChem, 2017, 12, 50-65.	3.2	13
8	Phenotypic Screen for Cardiac Regeneration Identifies Molecules with Differential Activity in Human Epicardium-Derived Cells versus Cardiac Fibroblasts. ACS Chemical Biology, 2017, 12, 132-141.	3.4	17
9	Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods. Journal of Computer-Aided Molecular Design, 2015, 29, 1109-1122.	2.9	7
10	New Hits as Antagonists of GPR103 Identified by HTS. ACS Medicinal Chemistry Letters, 2014, 5, 527-532.	2.8	6
11	GPR103 Antagonists Demonstrating Anorexigenic Activity in Vivo: Design and Development of Pyrrolo[2,3- <i>c</i>]pyridines That Mimic the C-Terminal Arg-Phe Motif of QRFP26. Journal of Medicinal Chemistry, 2014, 57, 5935-5948.	6.4	19
12	Synthesis, biological evaluation and X-ray crystallographic studies of imidazo[1,2-a]pyridine-based Mycobacterium tuberculosis glutamine synthetase inhibitors. MedChemComm, 2012, 3, 620.	3.4	29
13	Synthesis of Functionalized Cinnamaldehyde Derivatives by an Oxidative Heck Reaction and Their Use as Starting Materials for Preparation ofMycobacterium tuberculosis1-Deoxy-d-xylulose-5-phosphate Reductoisomerase Inhibitors. Journal of Organic Chemistry, 2011, 76, 8986-8998.	3.2	50
14	Functionalized 3-amino-imidazo[1,2-a]pyridines: A novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4790-4793.	2.2	85
15	Evaluation of the amino acid binding site of Mycobacterium tuberculosis glutamine synthetase for drug discovery. Bioorganic and Medicinal Chemistry, 2008, 16, 5501-5513.	3.0	33
16	Microwave-Enhanced α-Arylation of a Protected Glycine in Water:Evaluation of 3-Phenylglycine Derivatives as Inhibitors of the Tuberculosis Enzyme, Glutamine Synthetase. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 783-789.	1.1	11
17	Quantitative Structure–Activity Relationships of Pine Weevil Antifeedants, a Multivariate Approach. Journal of Agricultural and Food Chemistry, 2007, 55, 9365-9372.	5.2	14
18	Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorganic and Medicinal Chemistry, 2007, 15, 7795-7802.	3.0	72

#	Article	IF	CITATIONS
19	Links between bacterial production, amino-acid utilization and community composition in productive lakes. ISME Journal, 2007, 1, 532-544.	9.8	51
20	A General Model for Prediction of Caco-2 Cell Permeability. QSAR and Combinatorial Science, 2004, 23, 303-310.	1.4	28