
Shuji Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969265/publications.pdf

Version: 2024-02-01

SHUU YE

#	Article	IF	CITATIONS
1	Surface charge printing for programmed droplet transport. Nature Materials, 2019, 18, 936-941.	27.5	401
2	Orientation Determination of Protein Helical Secondary Structures Using Linear and Nonlinear Vibrational Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 12169-12180.	2.6	153
3	Accurate Determination of Interfacial Protein Secondary Structure by Combining Interfacial-Sensitive Amide I and Amide III Spectral Signals. Journal of the American Chemical Society, 2014, 136, 1206-1209.	13.7	106
4	Molecular Interactions between Magainin 2 and Model Membranes in Situ. Journal of Physical Chemistry B, 2009, 113, 12358-12363.	2.6	105
5	In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy. Journal of Structural Biology, 2009, 168, 61-77.	2.8	102
6	Antifouling and Antimicrobial Mechanism of Tethered Quaternary Ammonium Salts in a Cross-linked Poly(dimethylsiloxane) Matrix Studied Using Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2010, 26, 16455-16462.	3.5	91
7	Observing a Model Ion Channel Gating Action in Model Cell Membranes in Real Time in Situ: Membrane Potential Change Induced Alamethicin Orientation Change. Journal of the American Chemical Society, 2012, 134, 6237-6243.	13.7	88
8	Energy transfer rates and impact sensitivities of crystalline explosives. Combustion and Flame, 2003, 132, 240-246.	5.2	84
9	Interactions of Alamethicin with Model Cell Membranes Investigated Using Sum Frequency Generation Vibrational Spectroscopy in Real Time in Situ. Journal of Physical Chemistry B, 2010, 114, 3334-3340.	2.6	82
10	Orientation Difference of Chemically Immobilized and Physically Adsorbed Biological Molecules on Polymers Detected at the Solid/Liquid Interfaces in Situ. Langmuir, 2010, 26, 6471-6477.	3.5	69
11	Misfolding of a Human Islet Amyloid Polypeptide at the Lipid Membrane Populates through β-Sheet Conformers without Involving α-Helical Intermediates. Journal of the American Chemical Society, 2019, 141, 1941-1948.	13.7	58
12	Terahertz dielectric assay of solution phase protein binding. Applied Physics Letters, 2007, 90, 243901.	3.3	56
13	Conformational disorder of organic cations tunes the charge carrier mobility in two-dimensional organic-inorganic perovskites. Nature Communications, 2020, 11, 5481.	12.8	55
14	Theoretical Studies of Energy Transfer Rates of Secondary Explosives. Journal of Physical Chemistry B, 2006, 110, 18515-18520.	2.6	51
15	Ultrafast Vibrational Dynamics of Membraneâ€Bound Peptides at the Lipid Bilayer/Water Interface. Angewandte Chemie - International Edition, 2017, 56, 12977-12981.	13.8	48
16	Probing Molecular-Level Surface Structures of Polyethersulfone/Pluronic F127 Blends Using Sum-Frequency Generation Vibrational Spectroscopy. Langmuir, 2008, 24, 7939-7946.	3.5	45
17	Detection of Tethered Biocide Moiety Segregation to Silicone Surface Using Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2008, 24, 9686-9694.	3.5	44
18	Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive. Science Advances, 2016, 2, e1600579.	10.3	43

Shuji Ye

#	Article	IF	CITATIONS
19	Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules. Nature Communications, 2019, 10, 1010.	12.8	41
20	Single Lipid Bilayers Constructed on Polymer Cushion Studied by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 7613-7620.	3.1	39
21	In Situ Molecular-Level Insights into the Interfacial Structure Changes of Membrane-Associated Prion Protein Fragment [118–135] Investigated by Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2012, 28, 16979-16988.	3.5	34
22	Phosphate Ions Promoting Association between Peptide and Modeling Cell Membrane Revealed by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 11095-11103.	3.1	33
23	Ordered Water Layer on the Macroscopically Hydrophobic Fluorinated Polymer Surface and Its Ultrafast Vibrational Dynamics. Journal of the American Chemical Society, 2021, 143, 13074-13081.	13.7	30
24	In Situ and Real-Time SFG Measurements Revealing Organization and Transport of Cholesterol Analogue 6-Ketocholestanol in a Cell Membrane. Journal of Physical Chemistry Letters, 2014, 5, 419-424.	4.6	28
25	An approach to compatible multiple nonlinear vibrational spectroscopy measurements using a commercial sum frequency generation system. Analyst, The, 2011, 136, 2489.	3.5	27
26	Specific Ion Interaction Dominates over Hydrophobic Matching Effects in Peptide–Lipid Bilayer Interactions: The Case of Short Peptide. Journal of Physical Chemistry C, 2013, 117, 26190-26196.	3.1	27
27	Structure and Orientation of Interfacial Proteins Determined by Sum Frequency Generation Vibrational Spectroscopy. Advances in Protein Chemistry and Structural Biology, 2013, 93, 213-255.	2.3	27
28	Effect of Dehydration on the Interfacial Water Structure at a Charged Polymer Surface: Negligible χ ⁽³⁾ Contribution to Sum Frequency Generation Signal. Langmuir, 2012, 28, 1374-1380.	3.5	25
29	Intermolecular Interactions at the Interface Quantified by Surface-Sensitive Second-Order Fermi Resonant Signals. Journal of Physical Chemistry C, 2015, 119, 16587-16595.	3.1	23
30	Amide III SFG Signals as a Sensitive Probe of Protein Folding at Cell Membrane Surface. Journal of Physical Chemistry C, 2016, 120, 15322-15328.	3.1	23
31	A Highly Sensitive Femtosecond Time-Resolved Sum Frequency Generation Vibrational Spectroscopy System with Simultaneous Measurement of Multiple Polarization Combinations. Chinese Journal of Chemical Physics, 2017, 30, 671-677.	1.3	23
32	Acidic Environment Significantly Alters Aggregation Pathway of Human Islet Amyloid Polypeptide at Negative Lipid Membrane. Langmuir, 2020, 36, 1530-1537.	3.5	22
33	Transport and Organization of Cholesterol in a Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate. Langmuir, 2016, 32, 11681-11689.	3.5	20
34	Reversible Activation of pH-Responsive Cell-Penetrating Peptides in Model Cell Membrane Relies on the Nature of Lipid. Journal of Physical Chemistry C, 2017, 121, 15181-15187.	3.1	18
35	Disentangling Sum-Frequency Generation Spectra of the Water Bending Mode at Charged Aqueous Interfaces. Journal of Physical Chemistry B, 2021, 125, 7060-7067.	2.6	18
36	Vibron dynamics in RDX, \hat{I}^2 -HMX and Tetryl crystals. Chemical Physics, 2003, 293, 1-8.	1.9	17

Ѕнијі Үе

#	Article	IF	CITATIONS
37	Amide I SFG Spectral Line Width Probes the Lipid–Peptide and Peptide–Peptide Interactions at Cell Membrane In Situ and in Real Time. Langmuir, 2018, 34, 7554-7560.	3.5	16
38	Influenza A M2 transmembrane domain tunes its conformational heterogeneity and structural plasticity in the lipid bilayer by forming loop structures. Chemical Communications, 2018, 54, 5903-5906.	4.1	16
39	Molecular-Level Insights into N–N π-Bond Rotation in the pH-Induced Interfacial Isomerization of 5-Octadecyloxy-2-(2-pyridylazo)phenol Monolayer Investigated by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 16553-16560.	3.1	15
40	<i>In situ</i> examination of a charged amino acid-induced structural change in lipid bilayers by sum frequency generation vibrational spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 5657-5665.	2.8	14
41	Unsaturated Lipid Accelerates Formation of Oligomeric β-Sheet Structure of CP41 Fusion Peptide in Model Cell Membrane. Journal of Physical Chemistry B, 2020, 124, 5169-5176.	2.6	13
42	Observing Peptide-Induced Lipid Accumulation in a Single-Component Zwitterionic Lipid Bilayer. Journal of Physical Chemistry C, 2015, 119, 28523-28529.	3.1	11
43	Methanol Perturbing Modeling Cell Membranes Investigated using Linear and Nonlinear Vibrational Spectroscopy. Chinese Journal of Chemical Physics, 2013, 26, 27-34.	1.3	10
44	Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy. Science China Chemistry, 2014, 57, 1646-1661.	8.2	10
45	Fermi Resonant Interaction of the Tailed Methyl Groups of Langmuir Monolayer at the Air/Water Interface during Phase Transition. Journal of Physical Chemistry C, 2015, 119, 25394-25400.	3.1	10
46	Analyzing the stability of second harmonic intensity provides a sensitive probe of the aggregating of conjugated molecules at the interface. Journal of Molecular Liquids, 2016, 219, 111-116.	4.9	10
47	Molecular interactions of organic molecules at the air/water interface investigated by sum frequency generation vibrational spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 4488-4493.	2.8	10
48	Real-Time observation of protein transport across membranes by femtosecond sum frequency generation vibrational spectroscopy. Chinese Journal of Chemical Physics, 2018, 31, 523-528.	1.3	10
49	Intramolecular vibrational coupling in water molecules revealed by compatible multiple nonlinear vibrational spectroscopic measurements. Analyst, The, 2012, 137, 4981.	3.5	9
50	Homogeneous interfacial water structure favors realizing a low-friction coefficient state. Journal of Colloid and Interface Science, 2022, 626, 324-333.	9.4	9
51	The molecular surface conformation of surface-tethered polyelectrolytes on PDMS surfaces. Soft Matter, 2010, , .	2.7	8
52	Interaction between Potassium Phosphate Buffer Solution and Modeling Cell Membrane Investigated by Sum Frequency Generation Vibrational Spectroscopy. Chinese Journal of Chemical Physics, 2015, 28, 518-524.	1.3	8
53	The dehydration dynamics of a model cell membrane induced by cholesterol analogue 6-ketocholestanol investigated using sum frequency generation vibrational spectroscopy. Science China Chemistry, 2015, 58, 1176-1186.	8.2	8
54	Conformational Order of Alkyl Side Chain of Poly(3-alkylthiophene) Promotes Hole-Extraction Ability in Perovskite/Poly(3-alkylthiophene) Heterojunction. Journal of Physical Chemistry Letters, 2021, 12, 11817-11823.	4.6	8

Shuji Ye

#	Article	IF	CITATIONS
55	Specific Ion Effects on Protein Thermal Aggregation from Dilute Solutions to Crowded Environments. Langmuir, 2018, 34, 4289-4297.	3.5	7
56	Ultrafast Vibrational Dynamics of Membraneâ€Bound Peptides at the Lipid Bilayer/Water Interface. Angewandte Chemie, 2017, 129, 13157-13161.	2.0	6
57	Film thickness and surface plasmon tune the contribution of SFG signals from buried interface and air surface. Chinese Journal of Chemical Physics, 2020, 33, 532-539.	1.3	6
58	Protein–water coupling tunes the anharmonicity of amide I modes in the interfacial membrane-bound proteins. Journal of Chemical Physics, 2022, 156, 105103.	3.0	5
59	Evidence for a Local Field Effect in Surface Plasmon-Enhanced Sum Frequency Generation Vibrational Spectra. Langmuir, 2022, 38, 6099-6105.	3.5	5
60	Hydration Effects on Energy Relaxation of Ferric Cytochrome C Films after Soret-Band Photoexcitation. Journal of Physical Chemistry B, 2010, 114, 15151-15157.	2.6	4
61	Absorption of low molecular weight solutes into polyurethane in supercritical carbon dioxide. Journal of Applied Polymer Science, 2000, 77, 3162-3168.	2.6	2
62	Controlled-release polyurethane created by absorbing transition-metal acetate and benzyl carbinol. Journal of Applied Polymer Science, 2002, 85, 1170-1173.	2.6	2
63	Directly monitoring the active sites of charge transfer in heterocycles <i>in situ</i> and in real time. Chemical Communications, 2019, 55, 541-544.	4.1	2
64	Observing Two-Dimensional Spontaneous Reaction between a Silicon Electrode and a LiPF ₆ -Based Electrolyte <i>In Situ</i> and in Real Time. Journal of Physical Chemistry Letters, 2022, , 3224-3229.	4.6	2
65	Protein Conformational Dynamics Measured With Terahertz Time Domain Spectroscopy. , 2006, , .		1
66	Ultrafast Carriers Dynamics in GaSb/Mn Random Alloys. AIP Conference Proceedings, 2007, , .	0.4	1
67	Using terahertz spectroscopy as a protein binding assay. , 2006, 6080, 35.		0
68	Development of Tagless Biosensors for Detecting the Presence of Pathogens. , 0, , 123-134.		0