Jacek Jerzy Bigda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/396919/publications.pdf

Version: 2024-02-01

933447 677142 23 457 10 22 g-index citations h-index papers 23 23 23 826 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicology and Applied Pharmacology, 2007, 223, 267-276.	2.8	83
2	The natural history of a family of transplantable melanomas in hamsters. Cancer and Metastasis Reviews, 1988, 7, 95-118.	5.9	69
3	Induction of Apoptosis in HL-60 Cells through the ROS-Mediated Mitochondrial Pathway by Ramentaceone from <i>Drosera aliciae</i>). Journal of Natural Products, 2012, 75, 9-14.	3.0	56
4	Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration. PLoS ONE, 2016, 11, e0151420.	2.5	47
5	MiR-192 and miR-662 enhance chemoresistance and invasiveness of squamous cell lung carcinoma. Lung Cancer, 2018, 118, 111-118.	2.0	38
6	Inhibition of CD73 stimulates the migration and invasion of B16F10 melanoma cells in vitro, but results in impaired angiogenesis and reduced melanoma growth in vivo. Oncology Reports, 2014, 31, 819-827.	2.6	30
7	CD73 on B16F10 melanoma cells in CD73-deficient mice promotes tumor growth, angiogenesis, neovascularization, macrophage infiltration and metastasis. International Journal of Biochemistry and Cell Biology, 2015, 69, 1-10.	2.8	30
8	Increased mitochondrial superoxide dismutase expression and lowered production of reactive oxygen species during rotavirus infection. Virology, 2010, 404, 293-303.	2.4	20
9	Serum p53 antibodies in small cell lung cancer: the lack of prognostic relevance. Lung Cancer, 2001, 31, 17-23.	2.0	17
10	Interleukin 12 Augments Natural Killer-Cell Mediated Cytotoxicity in Hairy Cell Leukemia. Leukemia and Lymphoma, 1993, 10, 121-125.	1.3	13
11	A novel mechanism of action of the fumagillin analog, TNP-470, in the B16F10 murine melanoma cell line. Anti-Cancer Drugs, 2005, 16, 817-823.	1.4	9
12	Clinical and Biological Significance of ESR1 Gene Alteration and Estrogen Receptors Isoforms Expression in Breast Cancer Patients. International Journal of Molecular Sciences, 2019, 20, 1881.	4.1	8
13	Interleukin 2– and Interferon Alpha Induced Natural Killer Cell Activity as a Marker of Progression in Hairy Cell Leukemia. Leukemia and Lymphoma, 1993, 9, 371-376.	1.3	7
14	U937 variant cells as a model of apoptosis without cell disintegration. Cellular and Molecular Biology Letters, 2013, 18, 249-62.	7.0	7
15	Cytocidal effect of interleukin 1 (IL-1) on HeLa cells is mediated by both soluble and transmembrane tumor necrosis factor (TNF). Cytokine, 2008, 42, 243-255.	3.2	5
16	Elderly high NK responders are characterized by intensive proliferative response to PHA and Con A and optimal health status. Archives of Gerontology and Geriatrics, 1993, 16, 199-205.	3.0	4
17	IDENTIFICATION OF TWO U937 CELL SUBLINES EXHIBITING DIFFERENT PATTERNS OF RESPONSE TO TUMOUR NECROSIS FACTOR. Cytokine, 2001, 13, 365-370.	3.2	3
18	Anti-tumor action of tumor necrosis factor against Bomirski Ab melanoma in hamsters. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 267-279.	2.3	3

#	Article	IF	CITATIONS
19	WacÅ, aw Szybalski's contribution to immunotherapy: HGPRT mutation & HAT selection as first steps to gene therapy and hybrid techniques in mammalian cells. Gene, 2013, 525, 158-161.	2.2	3
20	The atypical pattern of cell death in B16F10 melanoma cells treated with TNP-470. Cellular and Molecular Biology Letters, 2006, $11,384-95$.	7.0	2
21	A Proteomic-Based Approach to Study the Mechanism of Cytotoxicity Induced by Interleukin- $1\hat{l}\pm$ and Cycloheximide. Chromatographia, 2018, 81, 47-56.	1.3	2
22	Defective apoptosis of U937 cells induced by benzyl isothiocyanate (BITC). Acta Biochimica Polonica, 2019, 66, 401-407.	0.5	1
23	A tale of the monoclonal anti-CD20 antibodies, in tribute to prof. WacÅ,aw Szybalski (1921–2020). Acta Biochimica Polonica, 2021, 68, 353-358.	0.5	0