William T Pockman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3969043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytologist, 2008, 178, 719-739.	3.5	3,232
2	Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001, 126, 457-461.	0.9	1,257
3	Convergence across biomes to a common rain-use efficiency. Nature, 2004, 429, 651-654.	13.7	968
4	Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 2004, 141, 254-268.	0.9	942
5	Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418, 623-626.	13.7	833
6	A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1, 1285-1291.	3.4	739
7	Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. BioScience, 2003, 53, 941.	2.2	680
8	How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell and Environment, 2014, 37, 153-161.	2.8	642
9	ADAPTIVE VARIATION IN THE VULNERABILITY OF WOODY PLANTS TO XYLEM CAVITATION. Ecology, 2004, 85, 2184-2199.	1.5	584
10	ECOHYDROLOGICAL IMPLICATIONS OF WOODY PLANT ENCROACHMENT. Ecology, 2005, 86, 308-319.	1.5	582
11	Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. American Journal of Botany, 2000, 87, 1287-1299.	0.8	497
12	Tree dieâ€off in response to global changeâ€ŧype drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 2009, 7, 185-189.	1.9	436
13	Evaluating theories of droughtâ€induced vegetation mortality using a multimodel–experiment framework. New Phytologist, 2013, 200, 304-321.	3.5	340
14	Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Climate Change, 2016, 6, 295-300.	8.1	296
15	Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant, Cell and Environment, 1993, 16, 279-287.	2.8	292
16	Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere, 2010, 1, 1-11.	1.0	290
17	Sustained and significant negative water pressure in xylem. Nature, 1995, 378, 715-716.	13.7	289
18	Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 1997, 48, 665-674.	2.4	267

#	Article	IF	CITATIONS
19	Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytologist, 2013, 198, 567-578.	3.5	256
20	Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia, 1996, 105, 293-301.	0.9	255
21	Variation in xylem structure and function in stems and roots of trees to 20Âm depth. New Phytologist, 2004, 163, 507-517.	3.5	243
22	Ecosystem rooting depth determined with caves and DNA. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11387-11392.	3.3	241
23	Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 2017, 23, 4376-4385.	4.2	231
24	Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 2018, 24, 2818-2827.	4.2	221
25	Response of the Soil Microbial Community to Changes in Precipitation in a Semiarid Ecosystem. Applied and Environmental Microbiology, 2012, 78, 8587-8594.	1.4	179
26	Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant, Cell and Environment, 2012, 35, 1601-1617.	2.8	170
27	Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 2016, 212, 577-589.	3.5	168
28	ECOHYDROLOGICAL CONTROL OF DEEP DRAINAGE IN ARID AND SEMIARID REGIONS. Ecology, 2005, 86, 277-287.	1.5	159
29	A Multiscale, Hierarchical Model of Pulse Dynamics in Arid-Land Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 397-419.	3.8	153
30	Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 2004, 141, 620-628.	0.9	145
31	Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia, 1997, 109, 19-27.	0.9	134
32	New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant, Cell and Environment, 1996, 19, 427-436.	2.8	121
33	Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiology, 2005, 25, 457-466.	1.4	120
34	Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 2013, 172, 1117-1127.	0.9	115
35	Carbohydrate dynamics and mortality in a piñonâ€juniper woodland under three future precipitation scenarios. Plant, Cell and Environment, 2015, 38, 729-739.	2.8	102
36	Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resources Research, 2015, 51, 6156-6176.	1.7	99

#	Article	IF	CITATIONS
37	Tree water dynamics in a drying and warming world. Plant, Cell and Environment, 2017, 40, 1861-1873.	2.8	96
38	Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Plant Ecology, 1993, 104-105, 133-143.	1.2	94
39	Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3031-3046.	1.3	91
40	Integrating Patch and Boundary Dynamics to Understand and Predict Biotic Transitions at Multiple Scales. Landscape Ecology, 2006, 21, 19-33.	1.9	87
41	Differential effects of extreme drought on production and respiration: synthesis and modeling analysis. Biogeosciences, 2014, 11, 621-633.	1.3	87
42	The impact of precipitation change on nitrogen cycling in a semiâ€arid ecosystem. Functional Ecology, 2014, 28, 1534-1544.	1.7	84
43	Regulation and acclimation of leaf gas exchange in a piñon–juniper woodland exposed to three different precipitation regimes. Plant, Cell and Environment, 2013, 36, 1812-1825.	2.8	83
44	Aquaporinâ€mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant, Cell and Environment, 2007, 30, 1411-1421.	2.8	82
45	Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. American Journal of Botany, 2000, 87, 1287-99.	0.8	78
46	Reduced transpiration response to precipitation pulses precedes mortality in a piñon–juniper woodland subject to prolonged drought. New Phytologist, 2013, 200, 375-387.	3.5	77
47	Mechanisms of a coniferous woodland persistence under drought and heat. Environmental Research Letters, 2019, 14, 045014.	2.2	72
48	Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains. Ecohydrology, 2008, 1, 193-204.	1.1	71
49	Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Tree Physiology, 2006, 26, 313-323.	1.4	70
50	The Cohesionâ€Tension Theory. New Phytologist, 2004, 163, 451-452.	3.5	68
51	Heavy and Light Beer:Â A Carbon Isotope Approach To Detect C4Carbon in Beers of Different Origins, Styles, and Prices. Journal of Agricultural and Food Chemistry, 2002, 50, 6413-6418.	2.4	66
52	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
53	Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland. Ecology and Evolution, 2015, 5, 1618-1638.	0.8	63
54	The Influence of Spatial Patterns of Soil Moisture on the Grass and Shrub Responses to a Summer Rainstorm in a Chihuahuan Desert Ecotone. Ecosystems, 2010, 13, 511-525.	1.6	59

#	Article	IF	CITATIONS
55	Drought increases freezing tolerance of both leaves and xylem of <i>Larrea tridentata</i> . Plant, Cell and Environment, 2011, 34, 43-51.	2.8	50
56	Methodology and performance of a rainfall manipulation experiment in a piñon–juniper woodland. Ecosphere, 2012, 3, 1-20.	1.0	50
57	The vulnerability to freezingâ€induced xylem cavitation of <i>Larrea tridentata</i> (Zygophyllaceae) in the Chihuahuan desert. American Journal of Botany, 2002, 89, 1916-1924.	0.8	49
58	Press–pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics. Global Change Biology, 2017, 23, 1095-1108.	4.2	49
59	Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use. Environmental and Experimental Botany, 2018, 152, 19-27.	2.0	49
60	Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Global Change Biology, 2015, 21, 843-856.	4.2	43
61	Allometry, growth and population regulation of the desert shrub Larrea tridentata. Functional Ecology, 2008, 22, 197-204.	1.7	38
62	Rapid plant community responses during the summer monsoon to nighttime warming in a northern Chihuahuan Desert grassland. Journal of Arid Environments, 2010, 74, 611-617.	1.2	35
63	Convergence in resource use efficiency across trees with differing hydraulic strategies in response to ecosystem precipitation manipulation. Functional Ecology, 2015, 29, 1125-1136.	1.7	35
64	An allometryâ€based model of the survival strategies of hydraulic failure and carbon starvation. Ecohydrology, 2016, 9, 529-546.	1.1	33
65	Too dry for lizards: shortâ€ŧerm rainfall influence onÂlizard microhabitat use in an experimental rainfall manipulation within a piñonâ€juniper. Functional Ecology, 2016, 30, 964-973.	1.7	32
66	Transport in a coordinated soil-root-xylem-phloem leaf system. Advances in Water Resources, 2018, 119, 1-16.	1.7	31
67	Divergent responses of primary production to increasing precipitation variability in global drylands. Global Change Biology, 2021, 27, 5225-5237.	4.2	31
68	Impacts of longâ€ŧerm precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA. Plant, Cell and Environment, 2018, 41, 421-435.	2.8	28
69	Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñonâ€Juniper Woodlands in the Southwestern U.S Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3343-3361.	1.3	25
70	Sensitivity of dryland plant allometry to climate. Functional Ecology, 2019, 33, 2290-2303.	1.7	24
71	Freezing regime and tradeâ€offs with water transport efficiency generate variation in xylem structure across diploid populations of <i>Larrea</i> sp. (Zygophyllaceae). American Journal of Botany, 2014, 101, 598-607.	0.8	22
72	Effects of monsoon precipitation variability on the physiological response of two dominant C4 grasses across a semiarid ecotone. Oecologia, 2014, 176, 751-762.	0.9	20

#	Article	IF	CITATIONS
73	Measuring Water Availability and Uptake in Ecosystem Studies. , 2000, , 199-214.		17
74	Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two coexisting aridâ€zone coniferous trees?. Plant, Cell and Environment, 2018, 41, 1551-1564.	2.8	16
75	Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. , 1993, , 133-143.		16
76	Interannual variations in needle and sapwood traits of <i>Pinus edulis</i> branches under an experimental drought. Ecology and Evolution, 2018, 8, 1655-1672.	0.8	15
77	Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia, 2019, 189, 1107-1120.	0.9	15
78	Winter climate change promotes an altered spring growing season in piñon pine-juniper woodlands. Agricultural and Forest Meteorology, 2015, 214-215, 357-368.	1.9	12
79	A heuristic classification of woody plants based on contrasting shade and drought strategies. Tree Physiology, 2019, 39, 767-781.	1.4	12
80	Carbon gain and hydraulic limits on water use differ between size classes of Larrea tridentata. Journal of Arid Environments, 2010, 74, 1121-1129.	1.2	11
81	The role of interannual, seasonal, and synoptic climate on the carbon isotope ratio of ecosystem respiration at a semiarid woodland. Global Change Biology, 2011, 17, 2584-2600.	4.2	11
82	Minimal mortality and rapid recovery of the dominant shrub <i>Larrea tridentata</i> following an extreme cold event in the northern Chihuahuan Desert. Journal of Vegetation Science, 2019, 30, 963-972.	1.1	10
83	Variation in seedling freezing response is associated with climate in Larrea. Oecologia, 2012, 169, 73-84.	0.9	9
84	Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus. Frontiers in Plant Science, 2013, 4, 365.	1.7	9
85	Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert. PLoS ONE, 2019, 14, e0210470.	1.1	8
86	Photoprotective response to chilling differs among high and low latitude Larrea divaricata grown in a common garden. Journal of Arid Environments, 2015, 120, 51-54.	1.2	7
87	State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03433.	1.0	6
88	Hydrologic control of the oxygen isotope ratio of ecosystem respiration in a semi-arid woodland. Biogeosciences, 2013, 10, 4937-4956.	1.3	5
89	Leaf Anatomy of Orcuttieae (Poaceae: Chloridoideae): More Evidence of C4Photosynthesis without Kranz Anatomy. Madroño, 2008, 55, 143-150.	0.3	3
90	Ecosystem‣evel Energy and Water Budgets Are Resilient to Canopy Mortality in Sparse Semiarid Biomes. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005858.	1.3	2