
Gary D Acton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3968715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 2012, 488, 609-614.	27.8	342
2	Drilling to Gabbro in Intact Ocean Crust. Science, 2006, 312, 1016-1020.	12.6	230
3	Onset of Mediterranean outflow into the North Atlantic. Science, 2014, 344, 1244-1250.	12.6	144
4	A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores. Physics of the Earth and Planetary Interiors, 2006, 156, 194-204.	1.9	134
5	Antarctic ice sheet sensitivity to atmospheric CO ₂ variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3453-3458.	7.1	133
6	Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth and Planetary Science Letters, 2012, 317-318, 8-19.	4.4	101
7	A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change, 2015, 133, 49-64.	3.5	99
8	Block rotation and continental extension in Afar: A comparison to oceanic microplate systems. Tectonics, 1991, 10, 501-526.	2.8	76
9	Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene. Climate of the Past, 2014, 10, 955-973.	3.4	66
10	Paleomagnetic overprints in ocean sediment cores and their relationship to shear deformation caused by piston coring. Journal of Geophysical Research, 2002, 107, EPM 3-1-EPM 3-15.	3.3	62
11	A 13â€^200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. Earth and Planetary Science Letters, 2002, 194, 311-326.	4.4	59
12	IODP Expedition 339 in the Gulf of Cadiz and off West Iberia: decoding the environmental significance of the Mediterranean outflow water and its global influence. Scientific Drilling, 0, 16, 1-11.	0.6	53
13	A 57 Ma Pacific plate palaeomagnetic pole determined from a skewness analysis of crossings of marine magnetic anomaly 25r. Geophysical Journal International, 1994, 118, 529-554.	2.4	51
14	Sediment distribution and sedimentary processes across the Antarctic Wilkes Land margin during the Quaternary. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 1481-1508.	1.4	49
15	On the construction of geomagnetic timescales from non-prejudicial treatment of magnetic anomaly data from multiple ridges. Geophysical Journal International, 1997, 129, 176-182.	2.4	47
16	Micromagnetic coercivity distributions and interactions in chondrules with implications for paleointensities of the early solar system. Journal of Geophysical Research, 2007, 112, .	3.3	43
17	The "Shackleton Site" (IODP Site U1385) on the Iberian Margin. Scientific Drilling, 0, 16, 13-19.	0.6	41
18	The tectonic and geomagnetic significance of paleomagnetic observations from volcanic rocks from central Afar, Africa, Earth and Planetary Science Letters, 2000, 180, 225-241.	4.4	38

GARY D ACTON

#	Article	IF	CITATIONS
19	A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP) Tj ETQq1	1.0,78431 4.4	4 ₃₇ gBT /Ov
20	A 65 Ma palaeomagnetic pole for the Pacific plate from the skewness of magnetic anomalies 27r-31. Geophysical Journal International, 1991, 106, 407-420.	2.4	34
21	Eoceneâ€Oligocene paleoceanographic changes in the stratotype section, Massignano, Italy: Clues from rock magnetism and stable isotopes. Journal of Geophysical Research, 2007, 112, .	3.3	34
22	Rockâ€magnetic artifacts on longâ€ŧerm relative paleointensity variations in sediments. Geochemistry, Geophysics, Geosystems, 2013, 14, 29-43.	2.5	34
23	Paleomagnetism of Middle Miocene volcanic rocks in the Mojaveâ€Sonora Desert region of western Arizona and southeastern California. Journal of Geophysical Research, 1990, 95, 625-647.	3.3	30
24	Determining palaeomagnetic poles and anomalous skewness from marine magnetic anomaly skewness data from a single plate. Geophysical Journal International, 1992, 109, 209-224.	2.4	29
25	Frequent landslides from Koolau Volcano: Results from ODP Hole 1223A. Journal of Volcanology and Geothermal Research, 2006, 151, 251-268.	2.1	29
26	High-resolution paleomagnetic records from Holocene sediments from the Palmer Deep, Western Antartic Peninsula. Earth and Planetary Science Letters, 2000, 181, 429-441.	4.4	28
27	Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate. Earth and Planetary Science Letters, 2007, 262, 1-20.	4.4	28
28	A middle Miocene relative paleointensity record from the Equatorial Pacific. Earth and Planetary Science Letters, 2013, 374, 227-238.	4.4	27
29	Current controlled deposition on the Wilkes Land continental rise, Antarctica. Geological Society Memoir, 2002, 22, 373-384.	1.7	25
30	Formation of curved seafloor fabric by changes in rift propagation velocity and spreading rate: Application to the 95.5ŰW Galapagos propagator. Journal of Geophysical Research, 1988, 93, 11845-11861.	3.3	23
31	Depositional setting, provenance, and tectonic-volcanic setting of Eocene–Recent deep-sea sediments of the oceanic Izu–Bonin forearc, northwest Pacific (IODP Expedition 352). International Geology Review, 2018, 60, 1816-1854.	2.1	22
32	Millennialâ€scale iceberg surges after intensification of Northern Hemisphere glaciation. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	21
33	Evidence of early bottom water current flow after the Messinian Salinity Crisis in the Gulf of Cadiz. Marine Geology, 2016, 380, 315-329.	2.1	20
34	Geologic and palaeomagnetic constraints on the formation of weathered profiles near Inverell, Eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 126, 211-225.	2.3	19
35	The late Eocene greenhouse-icehouse transition: Observations from the Massignano global stratotype section and point (GSSP). , 2009, , .		19
36	North Atlantic paleoceanography: The last five million years. Eos, 2006, 87, 129.	0.1	18

GARY D ACTON

#	Article	IF	CITATIONS
37	Early to middle Miocene vegetation history of Antarctica supports eccentricity-paced warming intervals during the Antarctic icehouse phase. Global and Planetary Change, 2015, 127, 67-78.	3.5	17
38	A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic: Geomagnetic excursions and the Gaussâ€Matuyama transition. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	16
39	Analyzing Micromagnetic Properties With FORCIT Software. Eos, 2007, 88, 230.	0.1	15
40	A test of the geocentric axial dipole hypothesis from an analysis of the skewness of the central marine magnetic anomaly. Earth and Planetary Science Letters, 1996, 144, 337-346.	4.4	14
41	Records of the Cobb Mountain Subchron from the Bermuda Rise (ODP LEG 172). Earth and Planetary Science Letters, 2001, 193, 303-313.	4.4	14
42	Geomagnetic field behavior at high latitudes from a paleomagnetic record from Eltanin core 27–21 in the Ross Sea sector, Antarctica. Earth and Planetary Science Letters, 2008, 267, 435-443.	4.4	14
43	The nature of a cryptochron from a paleomagnetic study of chron C4r.2r recorded in sediments off the Earth and Planetary Interiors, 2006, 156, 213-222.	1.9	13
44	Paleomagnetic directions of the Gauss-Matuyama polarity transition recorded in drift sediments (IODP Site U1314) in the North Atlantic. Earth, Planets and Space, 2008, 60, e13-e16.	2.5	13
45	Palaeomagnetic study of IODP Sites U1331 and U1332 in the equatorial Pacificextending relative geomagnetic palaeointensity observations through the Oligocene and into the Eocene. Geophysical Journal International, 2014, 196, 694-711.	2.4	13
46	Insights into magmatic processes and hydrothermal alteration of in situ superfast spreading ocean crust at ODP/IODP site 1256 from a cluster analysis of rock magnetic properties. Geochemistry, Geophysics, Geosystems, 2014, 15, 3430-3447.	2.5	13
47	Oligocene–Miocene magnetostratigraphy of deep-sea sediments from the equatorial Pacific (IODP Site) Tj E	TQq1130.7	84314 rgBT /(
48	Rock magnetic properties of the Gardar Drift sedimentary sequence, Site IODP U1314, North Atlantic: Implications for bottom current change through the mid-Pleistocene. Marine Geology, 2009, 265, 31-39.	2.1	10
49	Limits on the Age of the Deccan Traps of India from paleomagnetic and plate reconstruction data and their uncertainties. Journal of Geophysical Research, 1989, 94, 17713-17720.	3.3	9
50	Miocene Glacial Dynamics Recorded by Variations in Magnetic Properties in the ANDRILLâ€2A Drill Core. Journal of Geophysical Research: Solid Earth, 2019, 124, 2297-2312.	3.4	9
51	Climateâ€Induced Variability in Mediterranean Outflow to the North Atlantic Ocean During the Late Pleistocene. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003947.	2.9	5
52	Rock Magnetic Characterization Through an Intact Sequence of Oceanic Crust, IODP Hole 1256D. , 2011, , 153-168.		3
53	Absolute Paleointensities from an Intact Section of Oceanic Crust Cored at ODP/IODP Site 1256 in the Equatorial Pacific. , 2011, , 181-193.		3
54	Magnetic Mineralogy of a Complete Oceanic Crustal Section (IODP Hole 1256D). , 2011, , 169-179.		2

GARY D ACTON

#	Article	IF	CITATIONS
55	On the relationship between paleomagnetic secular variation and excursions – Records from MIS 6 and 7 - ODP Leg 172. Physics of the Earth and Planetary Interiors, 2021, 318, 106727.	1.9	2
56	On the relationship between paleomagnetic secular variation and excursions – Records from MIS 9 and 10 - ODP Leg 172. Physics of the Earth and Planetary Interiors, 2022, , 106864.	1.9	1
57	On the relationship between palaeomagnetic secular variation and excursions—records from MIS 8–ODP Leg 172. Geophysical Journal International, 2021, 225, 1129-1141.	2.4	Ο