Tomas Cermak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3968533/publications.pdf

Version: 2024-02-01

20 papers

6,537 citations

566801 15 h-index 752256 20 g-index

20 all docs

20 docs citations

times ranked

20

7456 citing authors

#	Article	IF	CITATIONS
1	Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 2011, 39, e82-e82.	6.5	1,793
2	Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics, 2010, 186, 757-761.	1.2	1,618
3	De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36, 1211-1216.	9.4	559
4	High-frequency, precise modification of the tomato genome. Genome Biology, 2015, 16, 232.	3.8	521
5	A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell, 2017, 29, 1196-1217.	3.1	469
6	DNA Replicons for Plant Genome Engineering Â. Plant Cell, 2014, 26, 151-163.	3.1	464
7	Novel alleles of rice <i>elF4G</i> generated by CRISPR/Cas9â€targeted mutagenesis confer resistance to <i>Rice tungro spherical virus</i> Plant Biotechnology Journal, 2018, 16, 1918-1927.	4.1	307
8	<scp>CRISPR</scp> /Cas9 and <scp>TALEN</scp> s generate heritable mutations for genes involved in small <scp>RNA</scp> processing of <i>Glycine max</i> and <i>Medicago truncatula</i> Plant Biotechnology Journal, 2018, 16, 1125-1137.	4.1	147
9	Allele exchange at the <scp>EPSPS</scp> locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal, 2018, 16, 1275-1282.	4.1	137
10	The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity, 2009, 102, 533-541.	1.2	136
11	Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science, 2017, 256, 120-130.	1.7	121
12	Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Research, 2008, 16, 961-976.	1.0	99
13	A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice. Plant Physiology, 2016, 170, 653-666.	2.3	47
14	Efficient Design and Assembly of Custom TALENs Using the Golden Gate Platform. Methods in Molecular Biology, 2015, 1239, 133-159.	0.4	38
15	Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytologist, 2014, 202, 662-678.	3.5	37
16	Agrobacterium rhizogenes-mediated transformation of a dioecious plant model Silene latifolia. New Biotechnology, 2019, 48, 20-28.	2.4	16
17	Mouse Genome Engineering Using Designer Nucleases. Journal of Visualized Experiments, 2014, , .	0.2	11
18	Design and Assembly of CRISPR/Cas9 Reagents for Gene Knockout, Targeted Insertion, and Replacement in Wheat. Methods in Molecular Biology, 2017, 1679, 187-212.	0.4	7

Tomas Cermak

#	Article	lF	CITATIONS
19	Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Research, 2021, 30, 353-379.	1.3	7
20	Genome Editing to Achieve the Crop Ideotype in Tomato. Methods in Molecular Biology, 2021, 2264, 219-244.	0.4	3