
Christian Schöneich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near UV and Visible Light Photo-Degradation Mechanisms in Citrate Buffer: One-Electron Reduction of Peptide and Protein Disulfides promotes Oxidation and Cis/Trans Isomerization of Unsaturated Fatty Acids of Polysorbate 80. Journal of Pharmaceutical Sciences, 2022, 111, 991-1003.	1.6	14
2	Oxidation and Deamidation of Monoclonal Antibody Products: Potential Impact on Stability, Biological Activity, and Efficacy. Journal of Pharmaceutical Sciences, 2022, 111, 903-918.	1.6	45
3	Thiyl radicals: Formation, properties, and detection. , 2022, , 115-132.		4
4	Intra-Micellar and Extra-Micellar Oxidation in Phosphate and Histidine Buffers Containing Polysorbate 80. Journal of Pharmaceutical Sciences, 2022, 111, 2435-2444.	1.6	2
5	Light-Induced Histidine Adducts to an IgG1 Molecule Via Oxidized Histidine Residue and the Potential Impact of Polysorbate-20 Concentration. Pharmaceutical Research, 2021, 38, 491-501.	1.7	9
6	Oxidative protein modifications of protein therapeutics: targeted proteomic analysis and consequences for stability, efficacy and immunogenicity. Free Radical Biology and Medicine, 2021, 165, 16.	1.3	0
7	Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer. Pharmaceutical Research, 2021, 38, 915-930.	1.7	7
8	Visible Light Degradation of a Monoclonal Antibody in a High-Concentration Formulation: Characterization of a Tryptophan-Derived Chromophoric Photo-product by Comparison to Photo-degradation of N-Acetyl-1-tryptophan Amide. Molecular Pharmaceutics, 2021, 18, 3223-3234.	2.3	1
9	Photo-induced fragmentation of tyrosine side chains in IgG4-Fc: Effect of protein sequence, conformation and glycan structure. Journal of Photochemistry and Photobiology, 2021, 7, 100049.	1.1	1
10	Analysis of N15-rat growth hormone after incubation with rat subcutaneous tissue and immune cells using ultra-pressure chromatography-mass spectrometry. Analytical Biochemistry, 2021, 634, 114425.	1.1	0
11	Proteolysis and Oxidation of Therapeutic Proteins After Intradermal or Subcutaneous Administration. Journal of Pharmaceutical Sciences, 2020, 109, 191-205.	1.6	24
12	Cis/Trans Isomerization of Unsaturated Fatty Acids in Polysorbate 80 During Light Exposure of a Monoclonal Antibody–Containing Formulation. Journal of Pharmaceutical Sciences, 2020, 109, 603-613.	1.6	12
13	Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc. Journal of Pharmaceutical Sciences, 2020, 109, 677-689.	1.6	6
14	Comparison of Polysorbate 80 Hydrolysis and Oxidation on the Aggregation of a Monoclonal Antibody. Journal of Pharmaceutical Sciences, 2020, 109, 633-639.	1.6	60
15	Near UV and Visible Light Induce Iron-Dependent Photodegradation Reactions in Pharmaceutical Buffers: Mechanistic and Product Studies. Molecular Pharmaceutics, 2020, 17, 4163-4179.	2.3	16
16	Azocompounds as generators of defined radical species: Contributions and challenges for free radical research. Free Radical Biology and Medicine, 2020, 160, 78-91.	1.3	34
17	Probing Protein Conformation Destabilization in Sterile Liquid Formulations through the Formation of 3,4-Dihydroxyphenylalanine. Molecular Pharmaceutics, 2020, 17, 3783-3793.	2.3	2
18	Novel Formaldehyde-Induced Modifications of Lysine Residue Pairs in Peptides and Proteins: Identification and Relevance to Vaccine Development. Molecular Pharmaceutics, 2020, 17, 4375-4385.	2.3	10

#	Article	IF	CITATIONS
19	Water Distribution and Clustering on the Lyophilized IgG1 Surface: Insight from Molecular Dynamics Simulations. Molecular Pharmaceutics, 2020, 17, 900-908.	2.3	6
20	N-Terminal Decarboxylation as a Probe for Intramolecular Contact Formation in γ-Glu-(Pro) <i>_n</i> -Met Peptides. Journal of Physical Chemistry B, 2020, 124, 8082-8098.	1.2	5
21	Photo-Degradation of Therapeutic Proteins: Mechanistic Aspects. Pharmaceutical Research, 2020, 37, 45.	1.7	33
22	Radical rearrangement and transfer reactions in proteins. Essays in Biochemistry, 2020, 64, 87-96.	2.1	4
23	Effect of Iron Oxide Nanoparticles on the Oxidation and Secondary Structure of Growth Hormone. Journal of Pharmaceutical Sciences, 2019, 108, 3372-3381.	1.6	6
24	Silicone Oil-Free Polymer Syringes for the Storage of Therapeutic Proteins. Journal of Pharmaceutical Sciences, 2019, 108, 1148-1160.	1.6	24
25	Xanthine oxidase-mediated oxidative stress promotes cancer cell-specific apoptosis. Free Radical Biology and Medicine, 2019, 139, 70-79.	1.3	42
26	Thiyl Radical Reactions in the Chemical Degradation of Pharmaceutical Proteins. Molecules, 2019, 24, 4357.	1.7	19
27	Glatiramer acetate persists at the injection site and draining lymph nodes via electrostatically-induced aggregation. Journal of Controlled Release, 2019, 293, 36-47.	4.8	25
28	Photoinduced Tyrosine Side Chain Fragmentation in IgG4-Fc: Mechanisms and Solvent Isotope Effects. Molecular Pharmaceutics, 2019, 16, 258-272.	2.3	15
29	Dual Effect of Histidine on Polysorbate 20 Stability: Mechanistic Studies. Pharmaceutical Research, 2018, 35, 33.	1.7	31
30	Understanding the Increased Aggregation Propensity of a Light-Exposed IgG1 Monoclonal Antibody Using Hydrogen Exchange Mass Spectrometry, Biophysical Characterization, and Structural Analysis. Journal of Pharmaceutical Sciences, 2018, 107, 1498-1511.	1.6	23
31	Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation. Journal of Pharmacy and Pharmacology, 2018, 70, 655-665.	1.2	17
32	Fragmentation of a Monoclonal Antibody by Peroxotungstate. Pharmaceutical Research, 2018, 35, 219.	1.7	7
33	Identification of D-Amino Acids in Light Exposed mAb Formulations. Pharmaceutical Research, 2018, 35, 238.	1.7	3
34	Investigation of Metal-Catalyzed Antibody Carbonylation With an Improved Protein Carbonylation Assay. Journal of Pharmaceutical Sciences, 2018, 107, 2570-2580.	1.6	5
35	Light-Induced Covalent Buffer Adducts to Histidine in a Model Protein. Pharmaceutical Research, 2018, 35, 67.	1.7	12
36	Postproduction Handling and Administration of Protein Pharmaceuticals and Potential Instability Issues. Journal of Pharmaceutical Sciences, 2018, 107, 2013-2019.	1.6	75

#	Article	IF	CITATIONS
37	New Insights into the Reaction Paths of 4-Carboxybenzophenone Triplet with Oligopeptides Containing N- and C-Terminal Methionine Residues. Journal of Physical Chemistry B, 2017, 121, 5247-5258.	1.2	12
38	Structure-Based Correlation of Light-Induced Histidine Reactivity in A Model Protein. Analytical Chemistry, 2017, 89, 7225-7231.	3.2	14
39	Photodegradation Pathways of Protein Disulfides: Human Growth Hormone. Pharmaceutical Research, 2017, 34, 2756-2778.	1.7	16
40	The Botanical Drug Substance Crofelemer as a Model System for Comparative Characterization of Complex Mixture Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 3242-3256.	1.6	14
41	Comparative Characterization of Crofelemer Samples Using Data Mining and Machine Learning Approaches With Analytical Stability Data Sets. Journal of Pharmaceutical Sciences, 2017, 106, 3270-3279.	1.6	5
42	Profiling the Photochemical-Induced Degradation of Rat Growth Hormone with Extreme Ultra-pressure Chromatography–Mass Spectrometry Utilizing Meter-Long Microcapillary Columns Packed with Sub-2-µm Particles. Chromatographia, 2017, 80, 1299-1318.	0.7	5
43	Chemical Stability of the Botanical Drug Substance Crofelemer: A Model System for Comparative Characterization of Complex Mixture Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 3257-3269.	1.6	6
44	An Efficient and Rapid Method to Monitor the Oxidative Degradation of Protein Pharmaceuticals: Probing Tyrosine Oxidation with Fluorogenic Derivatization. Pharmaceutical Research, 2017, 34, 1428-1443.	1.7	16
45	Photo-oxidation of IgC1 and Model Peptides: Detection and Analysis of Triply Oxidized His and Trp Side Chain Cleavage Products. Pharmaceutical Research, 2017, 34, 229-242.	1.7	29
46	Inhibition and conformational change of SERCA3b induced by Bcl-2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 121-131.	1.1	6
47	Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects. Antioxidants and Redox Signaling, 2017, 26, 388-405.	2.5	25
48	Degradation Mechanisms of Polysorbate 20 Differentiated by 180-labeling and Mass Spectrometry. Pharmaceutical Research, 2017, 34, 84-100.	1.7	48
49	Neighboring ï€-Amide Participation in Thioether Oxidation: Conformational Control. Organic Letters, 2016, 18, 3522-3525.	2.4	4
50	A Tribute to Ronald T. Borchardt—Teacher, Mentor, Scientist, Colleague, Leader, Friend, and Family Man. Journal of Pharmaceutical Sciences, 2016, 105, 370-385.	1.6	4
51	Neighboring amide participation in the Fenton oxidation of a sulfide to sulfoxide, vinyl sulfide and ketone relevant to oxidation of methionine thioether side chains in peptides. Tetrahedron, 2016, 72, 7770-7789.	1.0	1
52	Formation of a Three-Electron Sulfur–Sulfur Bond as a Probe for Interaction between Side Chains of Methionine Residues. Journal of Physical Chemistry B, 2016, 120, 9732-9744.	1.2	10
53	Comparative Evaluation of the Chemical Stability of 4 Well-Defined Immunoglobulin G1-Fc Glycoforms. Journal of Pharmaceutical Sciences, 2016, 105, 575-587.	1.6	20
54	Site-Specific Hydrolysis Reaction C-Terminal of Methionine in Met-His during Metal-Catalyzed Oxidation of IgG-1. Molecular Pharmaceutics, 2016, 13, 1317-1328.	2.3	7

#	Article	IF	CITATIONS
55	Thiyl radicals and induction of protein degradation. Free Radical Research, 2016, 50, 143-149.	1.5	58
56	Do Not Drop: Mechanical Shock in Vials Causes Cavitation, Protein Aggregation, and Particle Formation. Journal of Pharmaceutical Sciences, 2015, 104, 602-611.	1.6	86
57	Using Lysine-Reactive Fluorescent Dye for Surface Characterization of a mAb. Journal of Pharmaceutical Sciences, 2015, 104, 995-1004.	1.6	4
58	Low-Temperature NMR Characterization of Reaction of Sodium Pyruvate with Hydrogen Peroxide. Journal of Physical Chemistry A, 2015, 119, 966-977.	1.1	26
59	Chemical degradation of proteins in the solid state with a focus on photochemical reactions. Advanced Drug Delivery Reviews, 2015, 93, 2-13.	6.6	21
60	Photoinduced Aggregation of a Model Antibody–Drug Conjugate. Molecular Pharmaceutics, 2015, 12, 1784-1797.	2.3	25
61	Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways. Free Radical Biology and Medicine, 2015, 80, 145-147.	1.3	20
62	Protein thiyl radical reactions and product formation: a kinetic simulation. Free Radical Biology and Medicine, 2015, 80, 158-163.	1.3	40
63	Sarcoendoplasmic Reticulum Ca ²⁺ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 492-502.	1.4	36
64	Oxidation of Proteins in the In Vivo Environment: What We Know; What We Need to Study and Potential Mitigation Strategies. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 137-151.	0.2	0
65	Intramolecular 1,2―and 1,3â€Hydrogen Transfer Reactions of Thiyl Radicals. Israel Journal of Chemistry, 2014, 54, 265-271.	1.0	9
66	Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 42-57.	2.2	47
67	Oxidation of Therapeutic Proteins and Peptides: Structural and Biological Consequences. Pharmaceutical Research, 2014, 31, 541-553.	1.7	161
68	Sequence-Specific Formation of <scp>d</scp> -Amino Acids in a Monoclonal Antibody during Light Exposure. Molecular Pharmaceutics, 2014, 11, 4291-4297.	2.3	15
69	Characterization of Oxidative Carbonylation on Recombinant Monoclonal Antibodies. Analytical Chemistry, 2014, 86, 4799-4806.	3.2	26
70	Effect of Conformation on the Photodegradation of Trp- And Cystine-Containing Cyclic Peptides: Octreotide and Somatostatin. Molecular Pharmaceutics, 2014, 11, 3537-3546.	2.3	19
71	UV photodegradation of murine growth hormone: Chemical analysis and immunogenicity consequences. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 395-402.	2.0	25
72	The Photolysis of Disulfide Bonds in IgG1 and IgG2 Leads to Selective Intramolecular Hydrogen Transfer Reactions of Cysteine Thiyl Radicals, Probed by Covalent H/D Exchange and RPLC-MS/MS analysis. Pharmaceutical Research, 2013, 30, 1291-1299.	1.7	22

#	Article	IF	CITATIONS
73	Fluorogenic Tagging Methodology Applied to Characterize Oxidized Tyrosine and Phenylalanine in an Immunoglobulin Monoclonal Antibody. Pharmaceutical Research, 2013, 30, 1311-1327.	1.7	8
74	Role of Surface Exposed Tryptophan as Substrate Generators for the Antibody Catalyzed Water Oxidation Pathway. Molecular Pharmaceutics, 2013, 10, 278-288.	2.3	50
75	Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction. Molecular Pharmaceutics, 2013, 10, 739-755.	2.3	26
76	Photodegradation of Human Growth Hormone: A Novel Backbone Cleavage between Glu-88 and Pro-89. Molecular Pharmaceutics, 2013, 10, 2693-2706.	2.3	6
77	Proteomic Approaches to Analyze Protein Tyrosine Nitration. Antioxidants and Redox Signaling, 2013, 19, 1247-1256.	2.5	23
78	Identification of Oxidation Sites and Covalent Cross-Links in Metal Catalyzed Oxidized Interferon Beta-1a: Potential Implications for Protein Aggregation and Immunogenicity. Molecular Pharmaceutics, 2013, 10, 2311-2322.	2.3	39
79	Light-Induced Conversion of Trp to Gly and Gly Hydroperoxide in IgG1. Molecular Pharmaceutics, 2013, 10, 1146-1150.	2.3	39
80	Heat-shock proteins attenuate SERCA inactivation by the anti-apoptotic protein Bcl-2: possible implications for the ER Ca2+-mediated apoptosis. Biochemical Journal, 2012, 444, 127-139.	1.7	28
81	Biotherapeutic Formulation Factors Affecting Metal Leachables from Stainless Steel Studied by Design of Experiments. AAPS PharmSciTech, 2012, 13, 284-294.	1.5	25
82	Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: A useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration. Free Radical Biology and Medicine, 2012, 53, 1877-1885.	1.3	18
83	Oxidation of Human Growth Hormone by Oxygen-Centered Radicals: Formation of Leu-101 Hydroperoxide and Tyr-103 Oxidation Products. Molecular Pharmaceutics, 2012, 9, 803-814.	2.3	30
84	Intramolecular Hydrogen Transfer Reactions of Thiyl Radicals from Glutathione: Formation of Carbon-Centered Radical at Glu, Cys, and Gly. Chemical Research in Toxicology, 2012, 25, 1842-1861.	1.7	28
85	Reversible Hydrogen Transfer Reactions in Thiyl Radicals From Cysteine and Related Molecules: Absolute Kinetics and Equilibrium Constants Determined by Pulse Radiolysis. Journal of Physical Chemistry B, 2012, 116, 5329-5341.	1.2	47
86	Effect of pH and Light on Aggregation and Conformation of an IgG1 mAb. Molecular Pharmaceutics, 2012, 9, 774-790.	2.3	49
87	Tyrosine Modifications in Aging. Antioxidants and Redox Signaling, 2012, 17, 1571-1579.	2.5	73
88	Photodegradation of Oxytocin and Thermal Stability of Photoproducts. Journal of Pharmaceutical Sciences, 2012, 101, 3331-3346.	1.6	12
89	Chemical Modifications in Aggregates of Recombinant Human Insulin Induced by Metal-Catalyzed Oxidation: Covalent Cross-Linking via Michael Addition to Tyrosine Oxidation Products. Pharmaceutical Research, 2012, 29, 2276-2293.	1.7	46
90	Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells. Free Radical Biology and Medicine, 2012, 52, 951-961.	1.3	42

#	Article	IF	CITATIONS
91	Protein Instability and Immunogenicity: Roadblocks to Clinical Application of Injectable Protein Delivery Systems for Sustained Release. Journal of Pharmaceutical Sciences, 2012, 101, 946-954.	1.6	205
92	Photolysis of Recombinant Human Insulin in the Solid State: Formation of a Dithiohemiacetal Product at the C-Terminal Disulfide Bond. Pharmaceutical Research, 2012, 29, 121-133.	1.7	15
93	Reversible Hydrogen Transfer Reactions of Cysteine Thiyl Radicals in Peptides: the Conversion of Cysteine into Dehydroalanine and Alanine, and of Alanine into Dehydroalanine. Journal of Physical Chemistry B, 2011, 115, 12287-12305.	1.2	34
94	Neighboring Pyrrolidine Amide Participation in Thioether Oxidation. Methionine as a "Hopping―Site. Organic Letters, 2011, 13, 2837-2839.	2.4	23
95	Cysteine residues as catalysts for covalent peptide and protein modification: a role for thiyl radicals?. Biochemical Society Transactions, 2011, 39, 1254-1259.	1.6	16
96	Biologics Formulation Factors Affecting Metal Leachables from Stainless Steel. AAPS PharmSciTech, 2011, 12, 411-421.	1.5	47
97	A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides. Analytical Biochemistry, 2011, 418, 184-196.	1.1	29
98	Modeling of the ribonucleotide reductases substrate reaction. Hydrogen atom abstraction by a thiyl free radical and detection of the ribosyl-based carbon radical by pulse radiolysis. Collection of Czechoslovak Chemical Communications, 2011, 76, 1223-1238.	1.0	6
99	Fluorogenic Tagging of Peptide and Protein 3-Nitrotyrosine with 4-(Aminomethyl)benzenesulfonic Acid for Quantitative Analysis of Protein Tyrosine Nitration. Chromatographia, 2010, 71, 37-53.	0.7	28
100	Comparative Evaluation of Disodium Edetate and Diethylenetriaminepentaacetic Acid as Iron Chelators to Prevent Metal -Catalyzed Destabilization of a Therapeutic Monoclonal Antibody. Journal of Pharmaceutical Sciences, 2010, 99, 4239-4250.	1.6	53
101	Photolysis of an Intrachain Peptide Disulfide Bond: Primary and Secondary Processes, Formation of H ₂ S, and Hydrogen Transfer Reactions. Journal of Physical Chemistry B, 2010, 114, 3668-3688.	1.2	43
102	Reversible Hydrogen Transfer between Cysteine Thiyl Radical and Glycine and Alanine in Model Peptides: Covalent H/D Exchange, Radicalâ^'Radical Reactions, and <scp>l</scp> - to <scp>d</scp> -Ala Conversion. Journal of Physical Chemistry B, 2010, 114, 6751-6762.	1.2	33
103	Exposure of a Monoclonal Antibody, IgG1, to UV-Light Leads to Protein Dithiohemiacetal and Thioether Cross-Links: A Role for Thiyl Radicals?. Chemical Research in Toxicology, 2010, 23, 1310-1312.	1.7	38
104	Bcl-2 Suppresses Sarcoplasmic/Endoplasmic Reticulum Ca ²⁺ -ATPase Expression in Cystic Fibrosis Airways. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 816-826.	2.5	28
105	Factor analysis of transient spectra. Free radicals in cyclic dipeptides containing methionine. Research on Chemical Intermediates, 2009, 35, 431-442.	1.3	5
106	Neighboring Amide Participation in Thioether Oxidation: Relevance to Biological Oxidation. Journal of the American Chemical Society, 2009, 131, 13791-13805.	6.6	47
107	Intramolecular Addition of Cysteine Thiyl Radical to Phenylalanine and Tyrosine in Model Peptides, Phe (CysS [•]) and Tyr(CysS [•]): A Computational Study. Journal of Physical Chemistry A, 2009, 113, 3560-3565.	1.1	11
108	Inactivation of rabbit muscle glycogen phosphorylase b by peroxynitrite revisited: Does the nitration of Tyr613 in the allosteric inhibition site control enzymatic function?. Archives of Biochemistry and Biophysics, 2009, 484, 155-166.	1.4	16

#	Article	IF	CITATIONS
109	Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH. Analytical Biochemistry, 2008, 372, 227-236.	1.1	62
110	Phenylisothiocyanate as a Multiple Chemical Dimension Reagent for the Relative Quantitation of Protein Nitrotyrosine. Chromatographia, 2008, 68, 507-516.	0.7	7
111	Cysteine-674 oxidation and degradation of sarcoplasmic reticulum Ca2+ ATPase in diabetic pig aorta. Free Radical Biology and Medicine, 2008, 45, 756-762.	1.3	60
112	Peptide Cysteine Thiyl Radicals Abstract Hydrogen Atoms from Surrounding Amino Acids: The Photolysis of a Cystine Containing Model Peptide. Journal of Physical Chemistry B, 2008, 112, 9250-9257.	1.2	53
113	Reversible Intramolecular Hydrogen Transfer between Protein Cysteine Thiyl Radicals and ^α Câ^'H Bonds in Insulin: Control of Selectivity by Secondary Structure. Journal of Physical Chemistry B, 2008, 112, 15921-15932.	1.2	40
114	Reversible Intramolecular Hydrogen Transfer between Cysteine Thiyl Radicals and Glycine and Alanine in Model Peptides: Absolute Rate Constants Derived from Pulse Radiolysis and Laser Flash Photolysis. Journal of Physical Chemistry B, 2008, 112, 15034-15044.	1.2	69
115	Mechanisms of Protein Damage Induced by Cysteine Thiyl Radical Formation. Chemical Research in Toxicology, 2008, 21, 1175-1179.	1.7	82
116	Selective Fluorogenic Derivatization of 3-Nitrotyrosine and 3,4-Dihydroxyphenylalanine in Peptides: A Method Designed for Quantitative Proteomic Analysis. Methods in Enzymology, 2008, 441, 19-32.	0.4	19
117	Chapter 6 Oxidative Modification of Ca2+ Channels, Ryanodine Receptors, and the Sarco/Endoplasmic Reticulum Ca2+-ATPase. Current Topics in Membranes, 2008, 61, 113-130.	0.5	0
118	SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. Journal of Clinical Investigation, 2008, 118, 659-70.	3.9	282
119	Proteomic approach to aging research. Expert Review of Proteomics, 2007, 4, 309-321.	1.3	13
120	Oxidation and Inactivation of SERCA by Selective Reaction of Cysteine Residues with Amino Acid Peroxides. Chemical Research in Toxicology, 2007, 20, 1462-1469.	1.7	58
121	Reactions of Halogenated Hydroperoxides and Peroxyl and Alkoxyl Radicals from Isoflurane in Aqueous Solution. Journal of Physical Chemistry A, 2007, 111, 11618-11625.	1.1	7
122	Stabilization of Sulfide Radical Cations through Complexation with the Peptide Bond:  Mechanisms Relevant to Oxidation of Proteins Containing Multiple Methionine Residues. Journal of Physical Chemistry B, 2007, 111, 9608-9620.	1.2	67
123	Sulfur Radical Cationâ ``Peptide Bond Complex in the One-Electron Oxidation ofS-Methylglutathione. Journal of the American Chemical Society, 2007, 129, 9236-9245.	6.6	59
124	Selective oxidation of Zn2+—insulin catalyzed by Cu2+. Journal of Pharmaceutical Sciences, 2007, 96, 1844-1847.	1.6	5
125	Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. Journal of Neurochemistry, 2007, 100, 070209222715009-???.	2.1	45
126	Proteomic analysis of age dependent nitration of rat cardiac proteins by solution isoelectric focusing coupled to nanoHPLC tandem mass spectrometry. Experimental Gerontology, 2007, 42, 639-651.	1.2	38

#	Article	IF	CITATIONS
127	Age-dependent oxidation and aggregation of ZnT-1: A role for metal catalyzed oxidation?. Experimental Gerontology, 2007, 42, 1130-1136.	1.2	2
128	Selective Fluorogenic Derivatization with Isotopic Coding of Catechols and 2-Amino Phenols with Benzylamine: A Chemical Basis for the Relative Determination of 3-Hydroxy-tyrosine and 3-Nitro-tyrosine Peptides. Chromatographia, 2007, 66, 649-659.	0.7	10
129	One-electron oxidation of methionine peptides — Stability of the three-electron S—N(amide) bond. Canadian Journal of Chemistry, 2006, 84, 893-904.	0.6	24
130	Displacement of SERCA from SR Lipid Caveolae-Related Domains by Bcl-2: A Possible Mechanism for SERCA Inactivationâ€. Biochemistry, 2006, 45, 175-184.	1.2	33
131	Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC–electrospray-tandem MS: selective protein oxidation during biological aging. Biochemical Journal, 2006, 394, 605-615.	1.7	100
132	Characterization of the metal-binding site of human prolactin by site-specific metal-catalyzed oxidation. Analytical Biochemistry, 2006, 358, 208-215.	1.1	14
133	Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radical Biology and Medicine, 2006, 41, 1507-1520.	1.3	77
134	Age-associated tyrosine nitration of rat skeletal muscle glycogen phosphorylase b: characterization by HPLC–nanoelectrospray–Tandem mass spectrometry. Experimental Gerontology, 2006, 41, 407-416.	1.2	43
135	Protein modification in aging: An update. Experimental Gerontology, 2006, 41, 807-812.	1.2	53
136	Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2220-H2227.	1.5	125
137	Sâ€glutathiolation by peroxynitrite of p21ras at cysteineâ€118 mediates its direct activation and downstream signaling in endothelial cells. FASEB Journal, 2006, 20, 518-520.	0.2	123
138	Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1703, 111-119.	1.1	314
139	Protein tyrosine nitration in rat brain is associated with raft proteins, flotillin-1 and α-tubulin: effect of biological aging. Journal of Neurochemistry, 2005, 93, 1262-1271.	2.1	44
140	Mass spectrometry in aging research. Mass Spectrometry Reviews, 2005, 24, 701-718.	2.8	24
141	Proteomic Analysis of Protein Nitration in Aging Skeletal Muscle and Identification of Nitrotyrosine-containing Sequences in Vivo by Nanoelectrospray Ionization Tandem Mass Spectrometry. Journal of Biological Chemistry, 2005, 280, 24261-24266.	1.6	152
142	Protein Nitration in Biological Aging: Proteomic and Tandem Mass Spectrometric Characterization of Nitrated Sites. Methods in Enzymology, 2005, 396, 160-171.	0.4	46
143	Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H371-H381.	1.5	193
144	3-Nitrotyrosine Modification of SERCA2a in the Aging Heart:  A Distinct Signature of the Cellular Redox Environment. Biochemistry, 2005, 44, 13071-13081.	1.2	115

#	Article	IF	CITATIONS
145	Reactions of Aliphatic Thiyl Radicals in the Solid State:  Photoisomerization of trans-4,5-Dihydroxy-1,2-dithiacyclohexane and Oxidation of Dithiothreitol. Journal of Physical Chemistry A, 2005, 109, 9241-9248.	1.1	6
146	S-Glutathiolation in redox-sensitive signaling. Drug Discovery Today Disease Mechanisms, 2005, 2, 39-46.	0.8	16
147	S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nature Medicine, 2004, 10, 1200-1207.	15.2	577
148	Selective Cu2+/Ascorbate-Dependent Oxidation of Alzheimer's Disease β-Amyloid Peptides. Annals of the New York Academy of Sciences, 2004, 1012, 164-170.	1.8	15
149	Selective Site-Specific Fenton Oxidation of Methionine in Model Peptides: Evidence for a Metal-Bound Oxidant. Journal of Pharmaceutical Sciences, 2004, 93, 1122-1130.	1.6	17
150	Potential Role of Methionine Sulfoxide in the Inactivation of the Chaperone GroEL by Hypochlorous Acid (HOCl) and Peroxynitrite (ONOO–). Journal of Biological Chemistry, 2004, 279, 19486-19493.	1.6	83
151	Mechanism and Kinetics of Photoisomerization of a Cyclic Disulfide,trans-4,5-Dihydroxy-1,2-dithiacyclohexane. Journal of Physical Chemistry A, 2004, 108, 2247-2255.	1.1	19
152	UV Photolysis of 3-Nitrotyrosine Generates Highly Oxidizing Species:Â A Potential Source of Photooxidative Stress. Chemical Research in Toxicology, 2004, 17, 1227-1235.	1.7	11
153	Thiyl Radical Reaction with Amino Acid Side Chains:Â Rate Constants for Hydrogen Transfer and Relevance for Posttranslational Protein Modification. Chemical Research in Toxicology, 2004, 17, 1323-1328.	1.7	78
154	Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochemical Journal, 2004, 383, 361-370.	1.7	100
155	Proteomics in gerontological research. Experimental Gerontology, 2003, 38, 473-481.	1.2	25
156	Proteomic identification of age-dependent protein nitration in rat skeletal muscle. Free Radical Biology and Medicine, 2003, 35, 1229-1239.	1.3	106
157	Solid-State Photodegradation of Bovine Somatotropin (Bovine Growth Hormone): Evidence for Tryptophan-Mediated Photooxidation of Disulfide Bonds. Journal of Pharmaceutical Sciences, 2003, 92, 1698-1709.	1.6	38
158	Free Radical Reactions of Methionine in Peptides: Mechanisms Relevant to β-Amyloid Oxidation and Alzheimer's Disease. Journal of the American Chemical Society, 2003, 125, 13700-13713.	6.6	180
159	Computational Characterization of Sulfurâ~Oxygen Three-Electron-Bonded Radicals in Methionine and Methionine-Containing Peptides:  Important Intermediates in One-Electron Oxidation Processes. Journal of Physical Chemistry A, 2003, 107, 7032-7042.	1.1	36
160	Oxidative Inactivation of Purified Plasma Membrane Ca2+-ATPase by Hydrogen Peroxide and Protection by Calmodulinâ€. Biochemistry, 2003, 42, 12001-12010.	1.2	78
161	Thiyl Radical Reaction with Thymine:Â Absolute Rate Constant for Hydrogen Abstraction and Comparison to Benzylic Câ^'H Bonds. Chemical Research in Toxicology, 2003, 16, 1056-1061.	1.7	22
162	Thiyl Radicals Abstract Hydrogen Atoms from theαCâ^'H Bonds in Model Peptides: Absolute Rate Constants and Effect of Amino Acid Structure. Journal of the American Chemical Society, 2003, 125, 2042-2043.	6.6	91

#	Article	IF	CITATIONS
163	Antioxidant Improves Smooth Muscle Sarco/Endoplasmic Reticulum Ca 2+ -ATPase Function and Lowers Tyrosine Nitration in Hypercholesterolemia and Improves Nitric Oxide–Induced Relaxation. Circulation Research, 2002, 90, 1114-1121.	2.0	99
164	Computational Characterization of Sulfurâ^'Oxygen-Bonded Sulfuranyl Radicals Derived from Alkyl- and (Carboxyalkyl)thiopropionic Acids: Evidence for σ*-Type Radicals. Journal of Organic Chemistry, 2002, 67, 1526-1535.	1.7	17
165	Cu(II)-Catalyzed Oxidation of β-Amyloid Peptide Targets His13 and His14 over His6:  Detection of 2-Oxo-histidine by HPLC-MS/MS. Chemical Research in Toxicology, 2002, 15, 717-722.	1.7	101
166	Redox Processes of Methionine Relevant to β-Amyloid Oxidation and Alzheimer's Disease. Archives of Biochemistry and Biophysics, 2002, 397, 370-376.	1.4	109
167	Redox Properties of Met35in Neurotoxic β-Amyloid Peptide. A Molecular Modeling Study. Chemical Research in Toxicology, 2002, 15, 408-418.	1.7	62
168	Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid β-peptide (1–42). Free Radical Biology and Medicine, 2002, 32, 1205-121	1.3 1.	87
169	Characterization of the Metal-Binding Site of Bovine Growth Hormone through Site-Specific Metal-Catalyzed Oxidation and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Analytical Biochemistry, 2002, 300, 206-211.	1.1	35
170	Two-dimensional separation of the membrane protein sarcoplasmic reticulum Ca–ATPase for high-performance liquid chromatography–tandem mass spectrometry analysis of posttranslational protein modifications. Analytical Biochemistry, 2002, 308, 328-335.	1.1	37
171	Oxidative degradation of a sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrone in aqueous/organic cosolvent mixtures. Pharmaceutical Research, 2002, 19, 538-545.	1.7	13
172	High sensitivity of Zn2+ insulin to metal-catalyzed oxidation: detection of 2-oxo-histidine by tandem mass spectrometry. Pharmaceutical Research, 2002, 19, 530-537.	1.7	14
173	Conformational Flexibility Controls Proton Transfer between the Methionine Hydroxy Sulfuranyl Radical and the N-Terminal Amino Group in Thrâ°'(X)nâ°'Met Peptides. Journal of Physical Chemistry B, 2001, 105, 1250-1259.	1.2	31
174	Nitration and Inactivation of Tyrosine Hydroxylase by Peroxynitrite. Journal of Biological Chemistry, 2001, 276, 46017-46023.	1.6	156
175	Metalâ€catalyzed oxidation of human growth hormone: Modulation by solventâ€induced changes of protein conformation. Journal of Pharmaceutical Sciences, 2001, 90, 58-69.	1.6	31
176	Intermolecular complexes between sulfide radical cations from β-hydroxy sulfides and phosphate. Research on Chemical Intermediates, 2001, 27, 165-175.	1.3	6
177	Molecular aging. Experimental Gerontology, 2001, 36, 1423-1424.	1.2	4
178	The metal-catalyzed oxidation of methionine in peptides by Fenton systems involves two consecutive one-electron oxidation processes. Free Radical Biology and Medicine, 2001, 31, 1432-1441.	1.3	43
179	Oxidative degradation of pharmaceuticals: Theory, mechanisms and inhibition. Journal of Pharmaceutical Sciences, 2001, 90, 253-269.	1.6	190
180	Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. Journal of Pharmaceutical and Biomedical Analysis, 2000, 21, 1093-1097.	1.4	102

#	Article	IF	CITATIONS
181	Nitric oxide-dependent modification of the sarcoplasmic reticulum Ca-ATPase: localization of cysteine target sites. Free Radical Biology and Medicine, 2000, 29, 489-496.	1.3	69
182	Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase. Free Radical Biology and Medicine, 2000, 29, 986-994.	1.3	62
183	Metal-catalyzed oxidation of brain-derived neurotrophic factor (BDNF): analytical challenges for the identification of modified sites. Pharmaceutical Research, 2000, 17, 190-196.	1.7	12
184	Kinetics of the Reactions between Sulfide Radical Cation Complexes, [Sâ~S]+and [Sâ~N]+, and Superoxide or Carbon Dioxide Radical Anions. Journal of Physical Chemistry A, 2000, 104, 1240-1245.	1.1	30
185	Intramolecular Sulfurâ ´'Oxygen Bond Formation in Radical Cations ofN-Acetylmethionine Amide. Journal of the American Chemical Society, 2000, 122, 10224-10225.	6.6	61
186	Chemical stability of nucleic acid–derived drugs. Journal of Pharmaceutical Sciences, 2000, 89, 443.	1.6	32
187	Nitration and inactivation of cytochrome P450BM-3 by peroxynitrite . Stopped-flow measurements prove ferryl intermediates. FEBS Journal, 2000, 267, 6729-6739.	0.2	11
188	Multiple time scales in pulse radiolysis. Application to bromide solutions and dipeptides. Radiation Physics and Chemistry, 1999, 54, 559-566.	1.4	121
189	Age-related chemical modification of the skeletal muscle sarcoplasmic reticulum Ca-ATPase of the rat. Mechanisms of Ageing and Development, 1999, 107, 221-231.	2.2	35
190	Reactive oxygen species and biological aging: a mechanistic approach. Experimental Gerontology, 1999, 34, 19-34.	1.2	140
191	Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Letters, 1999, 455, 247-250.	1.3	173
192	Peroxynitrite Modification of Protein Thiols:Â Oxidation, Nitrosylation, and S-Glutathiolation of Functionally Important Cysteine Residue(s) in the Sarcoplasmic Reticulum Ca-ATPaseâ€. Biochemistry, 1999, 38, 12408-12415.	1.2	239
193	Separation and Analysis of Peptides and Proteins. Analytical Chemistry, 1999, 71, 389-423.	3.2	84
194	Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochemical Journal, 1999, 340, 657-669.	1.7	267
195	Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochemical Journal, 1999, 340, 657.	1.7	94
196	Oxidation of (Carboxyalkyl)thiopropionic Acid Derivatives by Hydroxyl Radicals. Mechanisms and Kinetics of Competitive Inter- and Intramolecular Formation of Îf- and Îf*-type Sulfuranyl Radicals. Journal of Physical Chemistry A, 1998, 102, 10512-10521.	1.1	37
197	One-Electron Photooxidation ofN-Methionyl Peptides. Mechanism of Sulfoxide and Azasulfonium Diastereomer Formation through Reaction of Sulfide Radical Cation Complexes with Oxygen or Superoxide. Journal of the American Chemical Society, 1998, 120, 3345-3356.	6.6	68
198	Loss of Conformational Stability in Calmodulin upon Methionine Oxidation. Biophysical Journal, 1998, 74, 1115-1134.	0.2	158

#	Article	IF	CITATIONS
199	Mechanisms of Methionine Oxidation in Peptides. ACS Symposium Series, 1997, , 79-89.	0.5	4
200	Metal-catalyzed Oxidation of Histidine in Human Growth Hormone. Journal of Biological Chemistry, 1997, 272, 9019-9029.	1.6	104
201	Mechanism of One-Electron Oxidation of β-, γ-, and Î′-Hydroxyalkyl Sulfides. Catalysis through Intramolecular Proton Transfer and Sulfurâ^'Oxygen Bond Formation. Journal of the American Chemical Society, 1997, 119, 8000-8011.	6.6	68
202	Inactivation of the Inducible Nitric Oxide Synthase by Peroxynitrite. Chemical Research in Toxicology, 1997, 10, 618-626.	1.7	51
203	Oxidation of Threonylmethionine by Peroxynitrite. Quantification of the One-Electron Transfer Pathway by Comparison to One-Electron Photooxidation. Journal of the American Chemical Society, 1997, 119, 4749-4757.	6.6	35
204	Electron-Transfer-Coupled Ligand Dynamics in Cul/II(TTCN)2Complexes in Aqueous Solution. Journal of the American Chemical Society, 1997, 119, 2134-2145.	6.6	24
205	Separation and Analysis of Peptides and Proteins. Analytical Chemistry, 1997, 69, 29-58.	3.2	36
206	In vivo aging of rat skeletal muscle sarcoplasmic reticulum Ca-ATPase. Chemical analysis and quantitative simulation by exposure to low levels of peroxyl radicals. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1329, 321-335.	1.4	33
207	Peroxynitrite Reduction of Calmodulin Stimulation of Neuronal Nitric Oxide Synthase. Chemical Research in Toxicology, 1996, 9, 484-491.	1.7	52
208	Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process?. FEBS Letters, 1996, 379, 286-290.	1.3	127
209	Oxidative Modification of a Carboxyl-Terminal Vicinal Methionine in Calmodulin by Hydrogen Peroxide Inhibits Calmodulin-Dependent Activation of the Plasma Membrane Ca-ATPase. Biochemistry, 1996, 35, 2767-2787.	1.2	138
210	Mechanism of Sulfoxide Formation through Reaction of Sulfur Radical Cation Complexes with Superoxide or Hydroxide Ion in Oxygenated Aqueous Solution. Journal of the American Chemical Society, 1996, 118, 11014-11025.	6.6	69
211	The Oxidative Inactivation of Sarcoplasmic Reticulum Ca ²⁺ -ATPase by Peroxynitrite. Free Radical Research, 1996, 24, 243-259.	1.5	157
212	Effects of polyaminocarboxylate metal chelators on iron-thiolate induced oxidation of methionine- and histidine-containing peptides. Pharmaceutical Research, 1996, 13, 931-938.	1.7	20
213	Decarboxylation mechanism of the n-terminal glutamyl moiety in Î ³ -glutamic acid and methionine containing peptides. Radiation Physics and Chemistry, 1996, 47, 507-510.	1.4	20
214	Chemical instability of protein pharmaceuticals: Mechanisms of oxidation and strategies for stabilization. Biotechnology and Bioengineering, 1995, 48, 490-500.	1.7	262
215	Chemical pathways of peptide degradation. VIII. Oxidation of methionine in small model peptides by prooxidant/transition metal ion systems: influence of selective scavengers for reactive oxygen intermediates. Pharmaceutical Research, 1995, 12, 348-355.	1.7	33
216	[4] Kinetics of thiol reactions. Methods in Enzymology, 1995, 251, 45-55.	0.4	41

#	Article	IF	CITATIONS
217	Aggregation and Precipitation of Human Relaxin Induced by Metal-Catalyzed Oxidation. Biochemistry, 1995, 34, 5762-5772.	1.2	133
218	Determination of absolute rate constants for the reversible hydrogen-atom transfer between thiyl radicals and alcohols or ethers. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1923-1930.	1.7	56
219	Separation and Analysis of Peptides and Proteins. Analytical Chemistry, 1995, 67, 155-181.	3.2	56
220	Side Chain Fragmentation of N-Terminal Threonine or Serine Residue Induced through Intramolecular Proton Transfer to Hydroxy Sulfuranyl Radical Formed at Neighboring Methionine in Dipeptides. Journal of the American Chemical Society, 1994, 116, 4641-4652.	6.6	64
221	Chemical pathways of peptide degradation. V. Ascorbic acid promotes rather than inhibits the oxidation of methionine to methionine sulfoxide in small model peptides. Pharmaceutical Research, 1993, 10, 1572-1579.	1.7	44
222	Intramolecular hydrogen transfer as the key step in the dissociation of hydroxyl radical adducts of (alkylthio)ethanol derivatives. Journal of the American Chemical Society, 1993, 115, 6538-6547.	6.6	72
223	Oxidation of polyunsaturated fatty acids and lipids through thiyl and sulfonyl radicals: Reaction kinetics, and influence of oxygen and structure of thiyl radicals. Archives of Biochemistry and Biophysics, 1992, 292, 456-467.	1.4	146
224	˙OH radical induced decarboxylation of methionine-containing peptides. Influence of peptide sequence and net charge. Journal of the Chemical Society Perkin Transactions II, 1991, , 353-362.	0.9	47
225	˙OH radical induced decarboxylation of γ-glutamylmethionine and S-alkylglutathione derivatives: evidence for two different pathways involving C- and N-terminal decarboxylation. Journal of the Chemical Society Perkin Transactions II, 1991, , 975-980.	0.9	22
226	Reactivity of ebselen and related selenoorganic compounds with 1,2-dichloroethane radical cations and halogenated peroxyl radicals. Archives of Biochemistry and Biophysics, 1990, 282, 18-25.	1.4	41
227	Reversible H-Atom Abstraction from Alcohols by Thiyl Radicals: Determination of Absolute Rate Constants by Pulse Radiolysis. Free Radical Research Communications, 1989, 6, 393-405.	1.8	69
228	Thiyl radical attack on polyunsaturated fatty acids: A possible route to lipid peroxidation. Biochemical and Biophysical Research Communications, 1989, 161, 113-120.	1.0	108
229	Rate Constants for the Reactions of Halogenated Organic Radicals. International Journal of Radiation Biology, 1988, 54, 773-785.	1.0	74
230	Hydrogen Atom Transfer in Model Reactions. , 0, , 1013-1035.		2

Hydrogen Atom Transfer in Model Reactions. , 0, , 1013-1035. 230