Jianzhi Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3968255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sensing of Environment, 2020, 242, 111756.	4.6	73
2	Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sensing of Environment, 2020, 251, 112052.	4.6	63
3	Adapting & testing use of USLE K factor for agricultural soils in China. Agriculture, Ecosystems and Environment, 2019, 269, 148-155.	2.5	51
4	A particle batch smoother for soil moisture estimation using soil temperature observations. Advances in Water Resources, 2015, 83, 111-122.	1.7	47
5	Multivariate data assimilation of GRACE, SMOS, SMAP measurements for improved regional soil moisture and groundwater storage estimates. Advances in Water Resources, 2020, 135, 103477.	1.7	47
6	Data assimilation of high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard. Remote Sensing of Environment, 2020, 239, 111622.	4.6	46
7	Runoff and soil erosion from highway construction spoil deposits: A rainfall simulation study. Transportation Research, Part D: Transport and Environment, 2012, 17, 8-14.	3.2	45
8	Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sensing of Environment, 2021, 255, 112225.	4.6	41
9	The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals. Geophysical Research Letters, 2018, 45, 758-765.	1.5	37
10	A double instrumental variable method for geophysical product error estimation. Remote Sensing of Environment, 2019, 225, 217-228.	4.6	36
11	Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures. Water Resources Research, 2016, 52, 4280-4300.	1.7	32
12	A Clobal Assessment of Added Value in the SMAP Level 4 Soil Moisture Product Relative to Its Baseline Land Surface Model. Geophysical Research Letters, 2019, 46, 6604-6613.	1.5	31
13	The Added Value of Assimilating Remotely Sensed Soil Moisture for Estimating Summertime Soil Moistureâ€Air Temperature Coupling Strength. Water Resources Research, 2018, 54, 6072-6084.	1.7	28
14	Soil Evaporation Stress Determines Soil Moistureâ€Evapotranspiration Coupling Strength in Land Surface Modeling. Geophysical Research Letters, 2020, 47, e2020GL090391.	1.5	27
15	Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother. Water Resources Research, 2016, 52, 9086-9108.	1.7	26
16	Triple Collocation Based Multi-Source Precipitation Merging. Frontiers in Water, 2020, 2, .	1.0	26
17	Determining soil moisture by assimilating soil temperature measurements using the Ensemble Kalman Filter. Advances in Water Resources, 2015, 86, 340-353.	1.7	25
18	Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nature Communications, 2022, 13, 336.	5.8	25

Jianzhi Dong

#	Article	IF	CITATIONS
19	An Improved Triple Collocation Analysis Algorithm for Decomposing Autocorrelated and White Soil Moisture Retrieval Errors. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,081.	1.2	24
20	Validation of a New Root-Zone Soil Moisture Product: Soil MERGE. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 3351-3365.	2.3	23
21	Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother. Advances in Water Resources, 2016, 91, 104-116.	1.7	22
22	Soil Moisture–Evapotranspiration Overcoupling and L-Band Brightness Temperature Assimilation: Sources and Forecast Implications. Journal of Hydrometeorology, 2020, 21, 2359-2374.	0.7	21
23	An instrument variable based algorithm for estimating cross-correlated hydrological remote sensing errors. Journal of Hydrology, 2020, 581, 124413.	2.3	20
24	Spatially Explicit Model for Statistical Downscaling of Satellite Passive Microwave Soil Moisture. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 1182-1191.	2.7	20
25	Stepwise modeling and the importance of internal variables validation to test model realism in a data scarce glacier basin. Journal of Hydrology, 2020, 591, 125457.	2.3	19
26	Improving Spatial Patterns Prior to Land Surface Data Assimilation via Model Calibration Using SMAP Surface Soil Moisture Data. Water Resources Research, 2020, 56, e2020WR027770.	1.7	19
27	Mapping highâ€resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother. Water Resources Research, 2016, 52, 7690-7710.	1.7	16
28	Use of Satellite Soil Moisture to Diagnose Climate Model Representations of European Soil Moistureâ€Air Temperature Coupling Strength. Geophysical Research Letters, 2018, 45, 12,884.	1.5	15
29	A triple collocation-based 2D soil moisture merging methodology considering spatial and temporal non-stationary errors. Remote Sensing of Environment, 2021, 263, 112509.	4.6	15
30	Can Surface Soil Moisture Information Identify Evapotranspiration Regime Transitions?. Geophysical Research Letters, 2022, 49, .	1.5	15
31	A Novel Fusion Method for Generating Surface Soil Moisture Data With High Accuracy, High Spatial Resolution, and High Spatioâ€Temporal Continuity. Water Resources Research, 2022, 58, .	1.7	15
32	L-band remote-sensing increases sampled levels of global soil moisture-air temperature coupling strength. Remote Sensing of Environment, 2019, 220, 51-58.	4.6	14
33	The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics. Sensors, 2017, 17, 2102.	2.1	13
34	The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis. Hydrology and Earth System Sciences, 2021, 25, 1569-1586.	1.9	12
35	Model representation of the coupling between evapotranspiration and soil water content at different depths. Hydrology and Earth System Sciences, 2020, 24, 581-594.	1.9	11
36	Improving Rain/No-Rain Detection Skill by Merging Precipitation Estimates from Different Sources. Journal of Hydrometeorology, 2020, 21, 2419-2429.	0.7	9

Jianzhi Dong

#	Article	IF	CITATIONS
37	Impact of Soil Moisture Data Resolution on Soil Moisture and Surface Heat Flux Estimates through Data Assimilation: A Case Study in the Southern Great Plains. Journal of Hydrometeorology, 2019, 20, 715-730.	0.7	8
38	A Triple Collocation-Based Comparison of Three L-Band Soil Moisture Datasets, SMAP, SMOS-IC, and SMOS, Over Varied Climates and Land Covers. Frontiers in Water, 2021, 3, .	1.0	7
39	Factors Controlling Temporal Stability of Surface Soil Moisture: A Watershed‣cale Modeling Study. Vadose Zone Journal, 2017, 16, 1-15.	1.3	6
40	Long-Term Trends in Root-Zone Soil Moisture across CONUS Connected to ENSO. Remote Sensing, 2020, 12, 2037.	1.8	4
41	Comparison of traditional method and triple collocation analysis for evaluation of multiple gridded precipitation products across Germany. Journal of Hydrometeorology, 2021, , .	0.7	4
42	Identification of varied soil hydraulic properties in a seasonal tropical rainforest. Catena, 2022, 212, 106104.	2.2	3
43	Improving soil moisture assimilation efficiency via model calibration using SMAP surface soil moisture climatology information. Remote Sensing of Environment, 2022, 280, 113161.	4.6	2
44	Assessing Performances of Multivariate Data Assimilation Algorithms with SMOS, SMAP, and GRACE Observations for Improved Soil Moisture and Groundwater Analyses. Water (Switzerland), 2022, 14, 621.	1.2	1
45	Temporal Changes in China's Air Temperature Distribution and Its Impact on Hot Extreme Occurrence. Atmosphere, 2019, 10, 748.	1.0	0
46	Expanding the Application of Soil Moisture Monitoring Systems through Regression-Based Transformation. Journal of Hydrometeorology, 2021, 22, 2601-2615.	0.7	0