
Michelle Alice Jusino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3968249/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ, 2018, 6, e4925.	0.9	186
2	An improved method for utilizing highâ€ŧhroughput amplicon sequencing to determine the diets of insectivorous animals. Molecular Ecology Resources, 2019, 19, 176-190.	2.2	109
3	A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182127.	1.2	50
4	A global review of the ecological significance of symbiotic associations between birds and fungi. Fungal Diversity, 2019, 98, 161-194.	4.7	47
5	Relationships among woodâ€boring beetles, fungi, and the decomposition of forest biomass. Molecular Ecology, 2019, 28, 4971-4986.	2.0	44
6	Heart rot hotel: fungal communities in red-cockaded woodpecker excavations. Fungal Ecology, 2015, 14, 33-43.	0.7	40
7	A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding analyses. Ecology and Evolution, 2020, 10, 9721-9739.	0.8	40
8	Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160106.	1.2	38
9	Identifying the "Mushroom of Immortality― Assessing the Ganoderma Species Composition in Commercial Reishi Products. Frontiers in Microbiology, 2018, 9, 1557.	1.5	35
10	Global Trends in Woodpecker Cavity Entrance Orientation: Latitudinal and Continental Effects Suggest Regional Climate Influence. Acta Ornithologica, 2014, 49, 257-266.	0.1	32
11	Wood decay fungus Flavodon ambrosius (Basidiomycota: Polyporales) is widely farmed by two genera of ambrosia beetles. Fungal Biology, 2017, 121, 984-989.	1.1	31
12	Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats. Journal of Mammalogy, 2018, 99, 668-674.	0.6	30
13	Detecting Symbioses in Complex Communities: the Fungal Symbionts of Bark and Ambrosia Beetles Within Asian Pines. Microbial Ecology, 2018, 76, 839-850.	1.4	29
14	Discovering the role of Patagonian birds in the dispersal of truffles and other mycorrhizal fungi. Current Biology, 2021, 31, 5558-5570.e3.	1.8	25
15	Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Molecular Ecology, 2021, 30, 855-873.	2.0	24
16	Bark beetle mycobiome: collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis, 2020, 81, 101-113.	1.2	20
17	Understudied, underrepresented, and unknown: Methodological biases that limit detection of early diverging fungi from environmental samples. Molecular Ecology Resources, 2022, 22, 1065-1085.	2.2	14
18	A Minimally Invasive Method for Sampling Nest and Roost Cavities for Fungi: a Novel Approach to Identify the Fungi Associated with Cavity-Nesting Birds. Acta Ornithologica, 2014, 49, 233-242.	0.1	12

#	Article	IF	CITATIONS
19	Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens. Phytopathology, 2022, 112, 261-270.	1.1	12

Sexual reproduction and saprotrophic dominance by the ambrosial fungus Flavodon subulatus (=) Tj ETQq0 0 0 rgBT $L_{0.7}^{-10}$ Overlock 10 Tf 50 0.7^{-11}

21	Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood. Fungal Ecology, 2022, 59, 101161.	0.7	11
22	Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites. Frontiers in Microbiology, 2017, 8, 1997.	1.5	9
23	DNA metabarcoding reveals broad woodpecker diets in fire-maintained forests. Auk, 2022, 139, .	0.7	9
24	Invasion of an inconspicuous ambrosia beetle and fungus may affect wood decay in Southeastern North America. Biological Invasions, 2021, 23, 1339-1347.	1.2	8
25	Wood-decay type and fungal guild dominance across a North American log transplant experiment. Fungal Ecology, 2022, 59, 101151.	0.7	8
26	Wood-colonizing fungal community response to forest restoration thinnings in a Pinus tabuliformis plantation in northern China. Forest Ecology and Management, 2020, 476, 118459.	1.4	6
27	Effects of Field Fumigation and Inoculation With the Pecan Truffle (Tuber lyonii) on the Fungal Community of Pecan (Carya illinoinensis) Seedlings Over 5 Years. Frontiers in Microbiology, 2021, 12, 661515.	1.5	5
28	Fungal communities associated with acorn woodpeckers and their excavations. Fungal Ecology, 2022, 59, 101154.	0.7	4
29	Major histocompatibility complex variation is similar in little brown bats before and after whiteâ€nose syndrome outbreak. Ecology and Evolution, 2020, 10, 10031-10043.	0.8	3
30	Fungal communities associated with roots of two closely related Juglandaceae species with a disjunct distribution in the tropics. Fungal Ecology, 2021, 50, 101023.	0.7	3
31	Using high-throughput amplicon sequencing to determine diet of generalist lady beetles in agricultural landscapes. Biological Control, 2022, 170, 104920.	1.4	3
32	Anthelmintic drugs modulate the acute phase immune response but not the microbiota in wild Song Sparrows. Auk, 2021, 138, .	0.7	1
33	Diseaseâ€related population declines in bats demonstrate nonâ€exchangeability in generalist predators. Ecology and Evolution, 2022, 12, .	0.8	1
34	Fungal community structure, development and function in decomposing wood. Fungal Ecology, 2022, 59, 101177.	0.7	1
35	Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker. Scientific Reports, 2022, 12, .	1.6	1