
Osvaldo Salazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3968226/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Soils of Chile. World Soils Book Series, 2013, , .	0.2	56
2	Direct measurement and prediction of bulk density on alluvial soils of central Chile. Chilean Journal of Agricultural Research, 2016, 76, 105-113.	1.1	48
3	Evaluation of the DRAINMOD–N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden. Agricultural Water Management, 2009, 96, 267-281.	5.6	46
4	Digital soil mapping and GlobalSoilMap. Main advances and ways forward. Geoderma Regional, 2020, 21, e00265.	2.1	37
5	Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile. Agricultural Water Management, 2019, 212, 399-406.	5.6	33
6	Phytostabilization of Cu in mine tailings using native plant Carpobrotus aequilaterus and the addition of potassium humates. Journal of Geochemical Exploration, 2017, 183, 102-113.	3.2	26
7	The impact of agroforestry combined with water harvesting on soil carbon and nitrogen stocks in central Chile evaluated using the ICBM/N model. Agriculture, Ecosystems and Environment, 2011, 140, 123-136.	5.3	21
8	Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil. Agricultural Water Management, 2014, 146, 218-227.	5.6	21
9	Evaluation of soil fertility and fertilisation practices for irrigated maize (Zea mays L.) under Mediterranean conditions in Central Chile. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	18
10	Changes in soil water balance following afforestation of former arable soils in Denmark as evaluated using the DAISY model. Journal of Hydrology, 2013, 484, 128-139.	5.4	16
11	Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert. Environmental Monitoring and Assessment, 2016, 188, 235.	2.7	16
12	CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort. Earth System Science Data, 2020, 12, 457-468.	9.9	16
13	Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model. Agricultural Water Management, 2008, 95, 1135-1143.	5.6	15
14	Morphophysical pedotransfer functions for groundwater pollution by nitrate leaching in Central Chile. Chilean Journal of Agricultural Research, 2014, 74, 340-348.	1.1	15
15	Effects of maize cultivation on nitrogen and phosphorus loadings to drainage channels in Central Chile. Environmental Monitoring and Assessment, 2015, 187, 697.	2.7	15
16	Evaluation of the DAISY model for predicting nitrogen leaching in coarse-textured soils cropped with maize in the Mediterranean zone of Chile. Agricultural Water Management, 2017, 182, 77-86.	5.6	15
17	Inorganic nitrogen losses from irrigated maize fields with narrow buffer strips. Nutrient Cycling in Agroecosystems, 2015, 102, 359-370.	2.2	14
18	Preferential flow paths in two alluvial soils with long-term additions of pig slurry in the Mediterranean zone of Chile. Soil Research, 2015, 53, 433.	1.1	10

OSVALDO SALAZAR

#	Article	IF	CITATIONS
19	Application of an integrated framework for estimating nitrate loads from a coastal watershed in south-east Sweden. Agricultural Water Management, 2013, 129, 56-68.	5.6	9
20	IDENTIFICATION OF HYDROLOGICAL FACTORS CONTROLLING PHOSPHORUS CONCENTRATION IN DRAINAGE WATER IN SANDY SOILS. Journal of Soil Science and Plant Nutrition, 2011, 11, 31-46.	3.4	8
21	Field Monitoring of 2010-Tsunami Impact on Agricultural Soils and Irrigation Waters: Central Chile. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	8
22	Accumulation of Sulphur in Atriplex nummularia Cultivated in Mine Tailings and Effect of Organic Amendments Addition. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	8
23	Modelling discharge from a coastal watershed in southeast Sweden using an integrated framework. Hydrological Processes, 2010, 24, 3837-3851.	2.6	5
24	Long-term monitoring of soil fertility for agroforestry combined with water harvesting in Central Chile. Archives of Agronomy and Soil Science, 2012, 58, S165-S169.	2.6	5
25	Assessment of Nitrogen and Phosphorus Pathways at the Profile of Over-fertilised Alluvial Soils. Implications for Best Management Practices. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	5
26	Net Nitrogen Mineralisation in Maize-Cover Crop Rotations in Mediterranean Central Chile. Journal of Soil Science and Plant Nutrition, 2020, 20, 1042-1050.	3.4	5
27	Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile. Agriculture (Switzerland), 2021, 11, 721.	3.1	3
28	Soil research, management, and policy priorities in Chile. Geoderma Regional, 2022, 29, e00502.	2.1	3
29	Challenges for agroecology development for the building of sustainable agri-food systems. International Journal of Agriculture and Natural Resources, 2020, 47, 152-158.	0.9	2
30	Human-Induced Soil Degradation in Chile. World Soils Book Series, 2013, , 121-158.	0.2	1
31	Accumulation of Mn in Leaves of <i>Rosmarinus officinalis</i> Cultivated in Substrates of Pine Bark. Communications in Soil Science and Plant Analysis, 2014, 45, 1961-1973.	1.4	1
32	The Development of a Model for Recommending the Application of Zinc Fertilizer in the Mediterranean Region of Central Chile. Journal of Soil Science and Plant Nutrition, 2021, 21, 249-257.	3.4	1
33	Physical assessment of a Mollisol under agroecological managements at Quillota valley. Mediterranean Central Chile. International Journal of Agriculture and Natural Resources, 2020, 47, 261-279.	0.9	1
34	Management of Soil Properties in Chile. World Soils Book Series, 2013, , 99-119.	0.2	0