Julian I Schroeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3967848/publications.pdf Version: 2024-02-01

269 papers	52,678 citations	729 120 h-index	¹³⁸¹ 222 g-index
paporo		in much	5 mach
283 all docs	283 docs citations	283 times ranked	25710 citing authors

#	Article	IF	CITATIONS
1	Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science, 2009, 324, 1068-1071.	6.0	2,385
2	Calcium channels activated by hydrogen peroxide mediate abscisic acidsignalling in guard cells. Nature, 2000, 406, 731-734.	13.7	1,938
3	NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal, 2003, 22, 2623-2633.	3.5	1,474
4	Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19, 371-379.	4.3	1,343
5	Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO ₂ , and Ca ²⁺ Signaling. Annual Review of Plant Biology, 2010, 61, 561-591.	8.6	1,165
6	Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiology, 2001, 126, 1646-1667.	2.3	1,110
7	GUARDCELLSIGNALTRANSDUCTION. Annual Review of Plant Biology, 2001, 52, 627-658.	14.2	1,038
8	The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the United States of America, 2007, 104, 12217-12222.	3.3	998
9	Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4991-4996.	3.3	800
10	Genetic strategies for improving crop yields. Nature, 2019, 575, 109-118.	13.7	799
11	SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008, 452, 487-491.	13.7	733
12	Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 2001, 410, 327-330.	13.7	694
13	Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science, 1995, 270, 1660-1663.	6.0	628
14	Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370, 655-658.	13.7	603
15	Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes and Development, 2010, 24, 1695-1708.	2.7	592
16	Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature, 1989, 338, 427-430.	13.7	586
17	Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant Journal, 2005, 44, 928-938.	2.8	572
18	Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal, 1999, 18, 3325-3333.	3.5	568

#	Article	IF	CITATIONS
19	Arsenic tolerance in <i>Arabidopsis</i> is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21187-21192.	3.3	555
20	A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature, 2001, 411, 1053-1057.	13.7	531
21	Abscisic Acid Activation of Plasma Membrane Ca ²⁺ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in <i>abi1-1</i> and <i>abi2-1</i> Protein Phosphatase 2C Mutants. Plant Cell, 2001, 13. 2513-2523.	3.1	530
22	CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure. PLoS Biology, 2006, 4, e327.	2.6	523
23	Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant[W]. Plant Cell, 2004, 16, 596-615.	3.1	508
24	Alteration of Stimulus-Specific Guard Cell Calcium Oscillations and Stomatal Closing in Arabidopsis det3 Mutant. Science, 2000, 289, 2338-2342.	6.0	467
25	Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1. Science, 2009, 326, 1373-1379.	6.0	457
26	Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science, 1992, 258, 1654-1658.	6.0	452
27	PYR/PYL/RCAR family members are major <i>inâ€vivo</i> ABI1 protein phosphatase 2Câ€interacting proteins in Arabidopsis. Plant Journal, 2010, 61, 290-299.	2.8	451
28	The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiology, 2005, 137, 1105-1114.	2.3	449
29	The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae. Plant Physiology, 2000, 122, 1249-1260.	2.3	445
30	Using membrane transporters to improve crops for sustainable food production. Nature, 2013, 497, 60-66.	13.7	440
31	Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 2015, 28, 154-162.	3.5	438
32	AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant Journal, 2003, 34, 685-695.	2.8	433
33	HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 2009, 14, 660-668.	4.3	433
34	Evolution of Abscisic Acid Synthesis and Signaling Mechanisms. Current Biology, 2011, 21, R346-R355.	1.8	425
35	Voltage dependence of K+ channels in guard-cell protoplasts. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4108-4112.	3.3	421
36	An mRNA Cap Binding Protein, ABH1, Modulates Early Abscisic Acid Signal Transduction in Arabidopsis. Cell, 2001, 106, 477-487.	13.5	414

#	Article	IF	CITATIONS
37	The <i>Arabidopsis</i> Nitrate Transporter NRT1.8 Functions in Nitrate Removal from the Xylem Sap and Mediates Cadmium Tolerance Â. Plant Cell, 2010, 22, 1633-1646.	3.1	413
38	Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 1215-1221.	9.4	407
39	Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10593-10598.	3.3	393
40	Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature, 1985, 318, 285-287.	13.7	389
41	Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9305-9309.	3.3	381
42	Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Current Opinion in Plant Biology, 2011, 14, 554-562.	3.5	366
43	Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction: Figure 1 Plant Physiology, 2004, 135, 702-708.	2.3	364
44	Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology, 2010, 12, 87-93.	4.6	364
45	Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 2002, 531, 157-161.	1.3	336
46	Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses. Annual Review of Physiology, 2009, 71, 59-82.	5.6	335
47	Role of Farnesyltransferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss. , 1998, 282, 287-290.		334
48	Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO Journal, 2007, 26, 3003-3014.	3.5	333
49	Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant Journal, 1999, 19, 735-747.	2.8	332
50	The Role of Reactive Oxygen Species in Hormonal Responses. Plant Physiology, 2006, 141, 323-329.	2.3	330
51	Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11, 372-374.	4.3	329
52	Perspectives on the Physiology and Structure of Inward-Rectifying K+ Channels in Higher Plants: Biophysical Implications for K Uptake. Annual Review of Biophysics and Biomolecular Structure, 1994, 23, 441-471.	18.3	326
53	A gene family of silicon transporters. Nature, 1997, 385, 688-689.	13.7	319
54	Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the United States of America, 2003, 100, 10118-10123.	3.3	319

#	Article	IF	CITATIONS
55	AtKUP1: An Arabidopsis Gene Encoding High-Affinity Potassium Transport Activity. Plant Cell, 1998, 10, 51-62.	3.1	314
56	Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of <i>Brassica napus</i> . A role for thiolâ€peptides in the longâ€distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal, 2008, 54, 249-259.	2.8	311
5 7	Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods, 2008, 4, 6.	1.9	295
58	Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature, 1984, 312, 361-362.	13.7	288
59	Arabidopsis abi1-1 and abi2-1 Phosphatase Mutations Reduce Abscisic Acid–Induced Cytoplasmic Calcium Rises in Guard Cells. Plant Cell, 1999, 11, 1785-1798.	3.1	286
60	Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 Are Essential for Tapetum Development and Microspore Maturation. Plant Cell, 2005, 17, 3350-3361.	3.1	283
61	Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 2022, 23, 680-694.	16.1	279
62	Disruption of the pollen-expressed <i>FERONIA</i> homologs <i>ANXUR1</i> and <i>ANXUR2</i> triggers pollen tube discharge. Development (Cambridge), 2009, 136, 3279-3288.	1.2	273
63	Overexpression of Phytochelatin Synthase in Arabidopsis Leads to Enhanced Arsenic Tolerance and Cadmium Hypersensitivity. Plant and Cell Physiology, 2004, 45, 1787-1797.	1.5	265
64	Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nature Cell Biology, 2006, 8, 391-397.	4.6	261
65	The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12043-12048.	3.3	259
66	Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6428-6433.	3.3	257
67	Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis. Plant Physiology, 2014, 164, 424-439.	2.3	254
68	The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA Â. Plant Physiology, 2006, 140, 127-139.	2.3	252
69	Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid Â. Plant Physiology, 2009, 150, 1345-1355.	2.3	252
70	A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14531-14536.	3.3	248
71	K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells Journal of General Physiology, 1988, 92, 667-683.	0.9	245
72	CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. Trends in Plant Science, 2016, 21, 16-30.	4.3	244

#	Article	IF	CITATIONS
73	Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7480-7485.	3.3	241
74	Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant Journal, 1996, 10, 869-882.	2.8	240
75	Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1 Â. Plant Physiology, 2006, 141, 1389-1399.	2.3	235
76	Calcium-Activated K + Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure. Plant Cell, 1994, 6, 669.	3.1	225
77	Convergence of Calcium Signaling Pathways of Pathogenic Elicitors and Abscisic Acid in Arabidopsis Guard Cells Â. Plant Physiology, 2002, 130, 2152-2163.	2.3	222
78	High-Affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions Â. Plant Physiology, 2010, 153, 863-875.	2.3	219
79	Signaling mechanisms in abscisic acidâ€mediated stomatal closure. Plant Journal, 2021, 105, 307-321.	2.8	214
80	Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends in Biochemical Sciences, 1989, 14, 187-192.	3.7	213
81	FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. ELife, 2014, 3, e01739.	2.8	213
82	Border Control—A Membrane-Linked Interactome of <i>Arabidopsis</i> . Science, 2014, 344, 711-716.	6.0	213
83	H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant Journal, 2010, 62, 760-772.	2.8	211
84	MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Communications, 2020, 11, 12.	5.8	202
85	Sodium Transporters in Plants. Diverse Genes and Physiological Functions. Plant Physiology, 2004, 136, 2457-2462.	2.3	199
86	Roles of Higher Plant K+ Channels. Plant Physiology, 1997, 114, 1141-1149.	2.3	197
87	Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9535-9539.	3.3	196
88	HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology, 2015, 32, 113-120.	3.3	195
89	Disruption of a Guard Cell–Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis. Plant Cell, 2002, 14, 2849-2861.	3.1	192
90	PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation Â. Plant Physiology, 2013, 162, 1652-1668.	2.3	190

#	Article	IF	CITATIONS
91	Electrical measurements on endomembranes. Science, 1992, 258, 873-874.	6.0	189
92	Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 2014, 513, 246-250.	13.7	189
93	Phosphatidylinositol 3- and 4-Phosphate Are Required for Normal Stomatal Movements. Plant Cell, 2002, 14, 2399-2412.	3.1	186
94	Proteins for Transport of Water and Mineral Nutrients across the Membranes of Plant Cells. Plant Cell, 1999, 11, 661-675.	3.1	178
95	Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11079-11084.	3.3	177
96	The Identity of Plant Glutamate Receptors. Science, 2001, 292, 1486b-1487.	6.0	175
97	CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7506-7511.	3.3	174
98	Dominant Negative Guard Cell K+ Channel Mutants Reduce Inward-Rectifying K+ Currents and Light-Induced Stomatal Opening in Arabidopsis. Plant Physiology, 2001, 127, 473-485.	2.3	173
99	Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. ELife, 2015, 4, .	2.8	172
100	OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology, 2016, 16, 22.	1.6	168
101	Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO ₂ signal transduction in guard cell. EMBO Journal, 2011, 30, 1645-1658.	3.5	167
102	Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Current Opinion in Plant Biology, 2006, 9, 654-663.	3.5	164
103	An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Scientific Reports, 2016, 6, 28941.	1.6	155
104	Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 2011, 21, 990-997.	1.8	152
105	Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, 2002, 247, 43-54.	1.8	151
106	Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca 2+] cyt Patterns in Arabidopsis. Molecular Plant, 2015, 8, 1188-1200.	3.9	150
107	Plasma Membrane–Associated ROP10 Small GTPase Is a Specific Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Cell, 2002, 14, 2787-2797.	3.1	146
108	Multiple Genes, Tissue Specificity, and Expression-Dependent Modulation Contribute to the Functional Diversity of Potassium Channels in Arabidopsis thaliana. Plant Physiology, 1995, 109, 1093-1106.	2.3	145

#	Article	IF	CITATIONS
109	An Improved Grafting Technique for Mature Arabidopsis Plants Demonstrates Long-Distance Shoot-to-Root Transport of Phytochelatins in Arabidopsis. Plant Physiology, 2006, 141, 108-120.	2.3	144
110	Calcium elevationâ€dependent and attenuated resting calciumâ€dependent abscisic acid induction of stomatal closure and abscisic acidâ€induced enhancement of calcium sensitivities of Sâ€type anion and inwardâ€rectifying K ⁺ channels in Arabidopsis guard cells. Plant Journal, 2009, 59, 207-220.	2.8	142
111	K+ Transport by the OsHKT2;4 Transporter from Rice with Atypical Na+ Transport Properties and Competition in Permeation of K+ over Mg2+ and Ca2+ Ions Â. Plant Physiology, 2011, 156, 1493-1507.	2.3	138
112	Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 2018, 9, 2132.	5.8	138
113	Enhancement of Na+ Uptake Currents, Time-Dependent Inward-Rectifying K+ Channel Currents, and K+Channel Transcripts by K+ Starvation in Wheat Root Cells. Plant Physiology, 2000, 122, 1387-1398.	2.3	136
114	Differential Sodium and Potassium Transport Selectivities of the Rice OsHKT2;1 and OsHKT2;2 Transporters in Plant Cells Â. Plant Physiology, 2009, 152, 341-355.	2.3	135
115	OPT3 Is a Component of the Iron-Signaling Network between Leaves and Roots and Misregulation of OPT3 Leads to an Over-Accumulation of Cadmium in Seeds. Molecular Plant, 2014, 7, 1455-1469.	3.9	135
116	Phytochelatin–metal(loid) transport into vacuoles shows different substrate preferences in barley and <i><scp>A</scp>rabidopsis</i> . Plant, Cell and Environment, 2014, 37, 1192-1201.	2.8	134
117	Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 11583-11587.	3.3	132
118	Rapid Up-Regulation of HKT1, a High-Affinity Potassium Transporter Gene, in Roots of Barley and Wheat following Withdrawal of Potassium. Plant Physiology, 1998, 118, 651-659.	2.3	131
119	A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2. Frontiers in Physiology, 2010, 1, 24.	1.3	131
120	Reconstitution of CO ₂ Regulation of SLAC1 Anion Channel and Function of CO ₂ -Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor. Plant Cell, 2016, 28, 568-582.	3.1	130
121	Caenorhabditis elegansexpresses a functional phytochelatin synthase. FEBS Journal, 2001, 268, 3640-3643.	0.2	128
122	Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Annals of Botany, 2012, 109, 5-17.	1.4	125
123	A Dof Transcription Factor, SCAP1, Is Essential for the Development of Functional Stomata in Arabidopsis. Current Biology, 2013, 23, 479-484.	1.8	125
124	The ATP Binding Cassette Transporter AtMRP5 Modulates Anion and Calcium Channel Activities in Arabidopsis Guard Cells. Journal of Biological Chemistry, 2007, 282, 1916-1924.	1.6	117
125	General Mechanisms for Solute Transport Across the Tonoplast of Plant Vacuoles: a Patchâ€Clamp Survey of Ion Channels and Proton Pumps. Botanica Acta, 1988, 101, 7-13.	1.6	116
126	The Peroxin Loss-of-Function Mutation abstinence by mutual consent Disrupts Male-Female Gametophyte Recognition. Current Biology, 2008, 18, 63-68.	1.8	116

#	Article	IF	CITATIONS
127	Genetic Selection of Mutations in the High Affinity K+ Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+ Permeability and Increased Na+Tolerance. Journal of Biological Chemistry, 1999, 274, 6839-6847.	1.6	113
128	Identification of Cyclic GMP-Activated Nonselective Ca2+-Permeable Cation Channels and Associated <i>CNGC5</i> and <i>CNGC6</i> Genes in Arabidopsis Guard Cells Â. Plant Physiology, 2013, 163, 578-590.	2.3	111
129	SnapShot: Abscisic Acid Signaling. Cell, 2017, 171, 1708-1708.e0.	13.5	109
130	Hypersensitivity of Abscisic Acid–Induced Cytosolic Calcium Increases in the Arabidopsis Farnesyltransferase Mutant era1-2. Plant Cell, 2002, 14, 1649-1662.	3.1	105
131	Identification of Strong Modifications in Cation Selectivity in an Arabidopsis Inward Rectifying Potassium Channel by Mutant Selection in Yeast. Journal of Biological Chemistry, 1995, 270, 24276-24281.	1.6	102
132	Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. Plant Physiology, 2015, 169, 760-779.	2.3	100
133	Magnesium Sensitizes Slow Vacuolar Channels to Physiological Cytosolic Calcium and Inhibits Fast Vacuolar Channels in Fava Bean Guard Cell Vacuoles. Plant Physiology, 1999, 121, 977-986.	2.3	98
134	Abscisic acid-independent stomatal CO ₂ signal transduction pathway and convergence of CO ₂ and ABA signaling downstream of OST1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9971-E9980.	3.3	91
135	A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO ₂ -Induced Stomatal Closure. Plant Cell, 2016, 28, 2493-2509.	3.1	89
136	Exploring Biophysical and Biochemical Components of the Osmotic Motor that Drives Stomatal Movement*. Botanica Acta, 1988, 101, 283-294.	1.6	88
137	Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant Journal, 1995, 8, 479-489.	2.8	87
138	Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9773-9778.	3.3	87
139	Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance. Journal of Biological Chemistry, 2010, 285, 40416-40426.	1.6	87
140	Insights into the Molecular Mechanisms ofÂCO2-Mediated Regulation of Stomatal Movements. Current Biology, 2018, 28, R1356-R1363.	1.8	85
141	Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Molecular Biology, 1995, 28, 353-361.	2.0	84
142	Differential Abscisic Acid Regulation of Guard Cell Slow Anion Channels in Arabidopsis Wild-Type and abi1 and abi2 Mutants. Plant Cell, 1997, 9, 409.	3.1	84
143	A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling inArabidopsis. FEBS Letters, 2006, 580, 4691-4696.	1.3	84
144	Impacts of altered RNA metabolism on abscisic acid signaling. Current Opinion in Plant Biology, 2003, 6, 463-469.	3.5	83

#	ARTICLE	IF	CITATIONS
145	Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15404-15409.	3.3	83
146	Quantitative transcriptomic analysis of abscisic acidâ€induced and reactive oxygen speciesâ€dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant Journal, 2011, 67, 105-118.	2.8	83
147	Localization, Ion Channel Regulation, and Genetic Interactions during Abscisic Acid Signaling of the Nuclear mRNA Cap-Binding Protein, ABH1. Plant Physiology, 2002, 130, 1276-1287.	2.3	82
148	Quantitative analysis of outward rectifying K+ channel currents in guard cell protoplasts fromVicia faba. Journal of Membrane Biology, 1989, 107, 229-235.	1.0	81
149	Rapid hyperosmotic-induced Ca ²⁺ responses in <i>Arabidopsis thaliana</i> exhibit sensory potentiation and involvement of plastidial KEA transporters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5242-9.	3.3	81
150	Calcium Regulation of Sodium Hypersensitivities of sos3 and athkt1 Mutants. Plant and Cell Physiology, 2006, 47, 622-633.	1.5	80
151	Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements. Plant Physiology, 2015, 169, 1168-1178.	2.3	78
152	Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance inArabidopsis thaliana. FEBS Letters, 2004, 578, 128-134.	1.3	74
153	Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate <scp>CO</scp> ₂ ―and <scp>ABA</scp> â€induced stomatal closing. Plant Journal, 2015, 83, 567-581.	2.8	73
154	All Four Putative Selectivity Filter Glycine Residues in KtrB Are Essential for High Affinity and Selective K+ Uptake by the KtrAB System from Vibrio alginolyticus. Journal of Biological Chemistry, 2005, 280, 41146-41154.	1.6	71
155	Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. Journal of Plant Physiology, 2011, 168, 1919-1926.	1.6	71
156	Cryo-EM structure of OSCA1.2 from <i>Oryza sativa</i> elucidates the mechanical basis of potential membrane hyperosmolality gating. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14309-14318.	3.3	71
157	Channel-mediated K+ flux in barley aleurone protoplasts. Planta, 1988, 176, 368-377.	1.6	70
158	Molecular and systems approaches towards droughtâ€ŧolerant canola crops. New Phytologist, 2016, 210, 1169-1189.	3.5	70
159	Natural Variation in Arabidopsis Cvi-O Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling. PLoS Biology, 2016, 14, e2000322.	2.6	69
160	ars1 , an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake. Plant Journal, 2003, 35, 637-646.	2.8	68
161	FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure. ELife, 2020, 9, .	2.8	68
162	mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. Plant Journal, 2007, 50, 1049-1062.	2.8	67

#	Article	IF	CITATIONS
163	Mapping transcription factor interactome networks using HaloTag protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4238-47.	3.3	67
164	ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant Journal, 2009, 59, 802-813.	2.8	64
165	Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 24, 5177-5192.	3.1	64
166	A Genomic-Scale Artificial MicroRNA Library as a Tool to Investigate the Functionally Redundant Gene Space in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 2848-2863.	3.1	62
167	Ca2+ Channels in Higher Plant Cells Plant Cell, 1991, 3, 555-559.	3.1	61
168	Suppression of Inward-Rectifying K + Channels KAT1 and AKT2 by Dominant Negative Point Mutations in the KAT1 α-Subunit. Journal of Membrane Biology, 1999, 167, 119-125.	1.0	61
169	AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells. PLoS ONE, 2011, 6, e24725.	1.1	61
170	Feedback inhibition by thiols outranks glutathione depletion: a luciferaseâ€based screen reveals glutathioneâ€deficient γâ€ECS and glutathione synthetase mutants impaired in cadmiumâ€induced sulfate assimilation. Plant Journal, 2012, 70, 783-795.	2.8	60
171	Roles of Ion Channels in Initiation of Signal Transduction in Higher Plants. Plant Cell, 1995, 7, 833.	3.1	58
172	Identification of SLAC1 anion channel residues required for CO ₂ /bicarbonate sensing and regulation of stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11129-11137.	3.3	58
173	Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. Plant Journal, 2014, 78, 646-658.	2.8	57
174	The <scp>HT</scp> 1 protein kinase is essential for red lightâ€induced stomatal opening and genetically interacts with <scp>OST</scp> 1 in red light and <scp>CO</scp> ₂ â€induced stomatal movement responses. New Phytologist, 2015, 208, 1126-1137.	3.5	56
175	Amino Terminus and the First Four Membrane-spanning Segments of the Arabidopsis K+ Channel KAT1 Confer Inward-rectification Property of Plant-Animal Chimeric Channels. Journal of Biological Chemistry, 1995, 270, 17697-17701.	1.6	53
176	A Quick Release Mechanism for Abscisic Acid. Cell, 2006, 126, 1023-1025.	13.5	51
177	Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nature Communications, 2019, 10, 726.	5.8	51
178	Mutations in the <scp>SLAC</scp> 1 anion channel slow stomatal opening and severely reduce K ⁺ uptake channel activity via enhanced cytosolic [Ca ²⁺] and increased Ca ²⁺ sensitivity of K ⁺ uptake channels. New Phytologist, 2013, 197, 88-98.	3.5	50
179	Mitogenâ€activated protein kinases <scp>MPK</scp> 4 and <scp>MPK</scp> 12 are key components mediating <scp>CO</scp> ₂ â€induced stomatal movements. Plant Journal, 2018, 96, 1018-1035.	2.8	49
180	Two Plasma Membrane H+-ATPase Genes Expressed in Guard Cells of Vicia faba Are Also Expressed Throughout the Plant. Plant and Cell Physiology, 1996, 37, 650-659.	1.5	48

#	Article	IF	CITATIONS
181	Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming. Plant Physiology, 2013, 163, 504-513.	2.3	47
182	The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO ₂ Signals via an ABA-Independent Pathway in Arabidopsis. Plant Cell, 2016, 28, 557-567.	3.1	47
183	Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLoS Biology, 2016, 14, e1002461.	2.6	45
184	The <scp>BIG</scp> protein distinguishes the process of <scp>CO</scp> ₂ â€induced stomatal closure from the inhibition of stomatal opening by <scp>CO</scp> ₂ . New Phytologist, 2018, 218, 232-241.	3.5	43
185	Ca 2+ Channels in Higher Plant Cells. Plant Cell, 1991, 3, 555.	3.1	42
186	Increased Resistance to Extracellular Cation Block by Mutation of the Pore Domain of the Arabidopsis Inward-rectifying K + Channel KAT1. Journal of Membrane Biology, 1996, 151, 53-62.	1.0	42
187	Expression of the Novel Wheat Gene TM20 Confers Enhanced Cadmium Tolerance to Bakers' Yeast. Journal of Biological Chemistry, 2008, 283, 15893-15902.	1.6	42
188	A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nature Communications, 2018, 9, 4204.	5.8	42
189	Abscisic acid and other plant hormones: Methods to visualize distribution and signaling. BioEssays, 2015, 37, 1338-1349.	1.2	41
190	Dynamic regulation of Pep-induced immunity through post-translational control of defence transcript splicing. Nature Plants, 2020, 6, 1008-1019.	4.7	40
191	Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden. Plant Direct, 2020, 4, e00198.	0.8	40
192	An HPLC-ICP-MS technique for determination of cadmium–phytochelatins in genetically modified Arabidopsis thaliana. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 861, 123-129.	1.2	39
193	Loss of Cytosolic Phosphoglucose Isomerase Affects Carbohydrate Metabolism in Leaves and Is Essential for Fertility of Arabidopsis Â. Plant Physiology, 2014, 166, 753-765.	2.3	39
194	Abscisic acid maintains S-type anion channel activity in ATP-depleted Vicia faba guard cells. FEBS Letters, 1998, 428, 177-182.	1.3	38
195	Intact leaf gas exchange provides a robust method for measuring the kinetics of stomatal conductance responses to abscisic acid and other small molecules in Arabidopsis and grasses. Plant Methods, 2019, 15, 38.	1.9	38
196	A role for calciumâ€dependent protein kinases in differential CO ₂ ―and ABAâ€controlled stomatal closing and low CO ₂ â€induced stomatal opening in Arabidopsis. New Phytologist, 2021, 229, 2765-2779.	3.5	38
197	Expression of a Cs + -Resistant Guard Cell K + Channel Confers Cs + -Resistant, Light-Induced Stomatal Opening in Transgenic Arabidopsis. Plant Cell, 1997, 9, 1843.	3.1	37
198	Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. Journal of Biochemistry, 2014, 155, 315-323.	0.9	37

#	Article	IF	CITATIONS
199	The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways. The Arabidopsis Book, 2008, 6, e0114.	0.5	36
200	Abscisic acid-induced degradation of <i>Arabidopsis</i> guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4522-E4531.	3.3	36
201	Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing. Plant Physiology, 2016, 171, 788-98.	2.3	34
202	Recent advances in the regulation of plant calcium channels: evidence for regulation by G-proteins, the cytoskeleton and second messengers. Current Opinion in Plant Biology, 1998, 1, 424-427.	3.5	33
203	Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO ₂ and light responses in <i>Arabidopsis</i> guard cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9038-9043.	3.3	32
204	KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Molecular Biology, 2008, 66, 61-72.	2.0	31
205	Molecular mechanisms of potassium and sodium uptake in plants. , 2002, , 43-54.		31
206	Protein Fragment Bimolecular Fluorescence Complementation Analyses for the In vivo Study of Protein-Protein Interactions and Cellular Protein Complex Localizations. Methods in Molecular Biology, 2014, 1062, 629-658.	0.4	30
207	COP1 Jointly Modulates Cytoskeletal Processes and Electrophysiological Responses Required for Stomatal Closure. Molecular Plant, 2014, 7, 1441-1454.	3.9	30
208	Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. Plant Physiology, 2021, 187, 2032-2042.	2.3	30
209	Dominant Negative Guard Cell K+ Channel Mutants Reduce Inward-Rectifying K+ Currents and Light-Induced Stomatal Opening in Arabidopsis. , 0, .		30
210	Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans. Journal of Experimental Botany, 1997, 48, 539-550.	2.4	27
211	Identification of an arsenic tolerant double mutant with a thiol-mediated component and increased arsenic tolerance in phyA mutants. Plant Journal, 2007, 49, 1064-1075.	2.8	26
212	Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytologist, 2021, 232, 468-475.	3.5	26
213	Magnesium-independent activation of inward-rectifying K+channels inVicia fabaguard cells. FEBS Letters, 1995, 363, 157-160.	1.3	24
214	Identification of AtOPT4 as a Plant Glutathione Transporter. Molecular Plant, 2016, 9, 481-484.	3.9	24
215	Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells. New Phytologist, 2002, 153, 527-533.	3.5	22
216	Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnology, 2008, 25, 233-239.	0.5	22

#	Article	IF	CITATIONS
217	Heterologous Expression and Functional Analysis of Higher Plant Transport Proteins in Xenopus Oocytes. Methods, 1994, 6, 70-81.	1.9	21
218	Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
219	Chemical genetic identification of a lectin receptor kinase that transduces immune responses and interferes with abscisic acid signaling. Plant Journal, 2019, 98, 492-510.	2.8	19
220	An <scp>amiRNA</scp> screen uncovers redundant <scp>CBF</scp> and <scp>ERF34</scp> /35 transcription factors that differentially regulate arsenite and cadmium responses. Plant, Cell and Environment, 2021, 44, 1692-1706.	2.8	19
221	Elemental Concentrations in the Seed of Mutants and Natural Variants of Arabidopsis thaliana Grown under Varying Soil Conditions. PLoS ONE, 2013, 8, e63014.	1.1	19
222	Daily Watch on Metabolism. Science, 2007, 318, 1730-1731.	6.0	18
223	Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO ₂ , abscisic acid, darkness, vapor pressure deficit and ozone. Plant Journal, 2021, 108, 134-150.	2.8	18
224	An integrated Arabidopsis annotation database for Affymetrix Genechip® data analysis, and tools for regulatory motif searches. Trends in Plant Science, 2001, 6, 448-449.	4.3	17
225	Plant salt stress status is transmitted systemically via propagating calcium waves. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6126-6127.	3.3	17
226	Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling. Plant Physiology, 2021, 187, 2311-2322.	2.3	17
227	Background ion channel activities in Arabidopsis guard cells and review of ion channel regulation by protein phosphorylation events. Journal of Experimental Botany, 1998, 49, 319-328.	2.4	15
228	Arabidopsis abi1-1 and abi2-1 Phosphatase Mutations Reduce Abscisic Acid-Induced Cytoplasmic Calcium Rises in Guard Cells. Plant Cell, 1999, 11, 1785.	3.1	15
229	Knockout of the guard cell K+out channel and stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4976-4977.	3.3	14
230	Cytosolic malate and oxaloacetate activate Sâ€ŧype anion channels in <i>Arabidopsis</i> guard cells. New Phytologist, 2018, 220, 178-186.	3.5	14
231	Abscisic Acid Activation of Plasma Membrane Ca 2+ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in abi1-1 and abi2-1 Protein Phosphatase 2C Mutants. Plant Cell, 2001, 13, 2513.	3.1	13
232	AtKUP1: An Arabidopsis Gene Encoding High-Affinity Potassium Transport Activity. Plant Cell, 1998, 10, 51.	3.1	12
233	Ion Channels and Plant Stress: Past, Present, and Future. Signaling and Communication in Plants, 2010, , 1-22.	0.5	12
234	A seed resource for screening functionally redundant genes and isolation of new mutants impaired in CO2 and ABA responses. Journal of Experimental Botany, 2019, 70, 641-651.	2.4	12

#	Article	IF	CITATIONS
235	The SLIM1 transcription factor is required for arsenic resistance in <i>Arabidopsis thaliana</i> . FEBS Letters, 2021, 595, 1696-1707.	1.3	12
236	Divergent perspectives on GM food. Nature Biotechnology, 2002, 20, 1195-1196.	9.4	11
237	Physiological Roles of Inward-Rectifying K + Channels. Plant Cell, 1993, 5, 1491.	3.1	10
238	Genetic selection of inward-rectifying K+ channel mutants with reduced Cs+ sensitivity by random recombinant DNA shuffling mutagenesis and mutant selection in yeast. Journal of Experimental Botany, 1999, 50, 967-978.	2.4	10
239	In SYNC: The Ins and Outs of Circadian Oscillations in Calcium. Science Signaling, 2007, 2007, pe32.	1.6	10
240	Screening for Natural Variation in Water Use Efficiency Traits in a Diversity Set of Brassica napus L. Identifies Candidate Variants in Photosynthetic Assimilation. Plant and Cell Physiology, 2017, 58, 1700-1709.	1.5	10
241	Starch biosynthesis by <scp>AGP</scp> ase, but not starch degradation by <scp>BAM</scp> 1/3 and <scp>SEX</scp> 1, is rateâ€limiting for <scp>CO</scp> ₂ â€regulated stomatal movements under shortâ€day conditions. FEBS Letters, 2018, 592, 2739-2759.	1.3	10
242	Signal transduction and calcium channels in higher plants. Current Opinion in Biotechnology, 1993, 4, 172-176.	3.3	9
243	Editorial overview: Plant signal transduction pathways: greying of the black boxes. Current Opinion in Plant Biology, 2001, 4, 379-381.	3.5	9
244	Nitrate at the ion exchange. Nature, 2006, 442, 877-878.	13.7	9
245	Two-electrode Voltage-clamp Recordings in Xenopus laevis Oocytes:Reconstitution of Abscisic Acid Activation of SLAC1 Anion Channel via PYL9 ABA Receptor. Bio-protocol, 2017, 7, .	0.2	9
246	Cyclic ADP-ribose and ABA signal transduction. Trends in Plant Science, 1998, 3, 123-125.	4.3	8
247	Chapter 37 Heterologous Expression of Higher Plant Transport Proteins and Repression of Endogenous Ion Currents in Xenopus Oocytes. Methods in Cell Biology, 1995, 50, 519-533.	0.5	7
248	Going Green: Phytohormone Mimetics for Drought Rescue. Plant Physiology, 2013, 163, 1087-1088.	2.3	7
249	Toward a Molecular Understanding of Plant Hormone Actions. Molecular Plant, 2016, 9, 1-3.	3.9	7
250	Expression of Ca2+ receptors in Xenopus oocytes injected with poly(A)+ mRNA from a rat calcitonin-secreting cell line. Biochemical and Biophysical Research Communications, 1992, 184, 1235-1240.	1.0	5
251	Abscisic acid in bloom. Nature, 2006, 439, 277-278.	13.7	5
252	Small Molecule DFPM Derivative-Activated Plant Resistance Protein Signaling in Roots Is Unaffected by EDS1 Subcellular Targeting Signal and Chemical Genetic Isolation of victr R-Protein Mutants. PLoS ONE, 2016, 11, e0155937.	1.1	5

#	Article	IF	CITATIONS
253	Proteins for Transport of Water and Mineral Nutrients across the Membranes of Plant Cells. Plant Cell, 1999, 11, 661.	3.1	4
254	Overexpression of Phytochelatin Synthase in Arabidopsis Leads to Enhanced Arsenic Tolerance and Cadmium Hypersensitivity. Plant and Cell Physiology, 2005, 46, 387-387.	1.5	4
255	Water Balance and the Regulation of Stomatal Movements. , 2009, , 283-305.		4
256	Protein kinase sensors: an overview of new designs for visualizing kinase dynamics in single plant cells. Plant Physiology, 2021, 187, 527-536.	2.3	4
257	Protein Kinase and Phosphatase Regulation During Abscisic Acid Signaling and Ion Channel Regulation in Guard Cells. , 1998, , 59-69.		4
258	At the roots of nutrition. Nature, 1995, 378, 560-561.	13.7	3
259	Toward a better understanding of signaling networks in plants: yeast has the power!. EMBO Journal, 2019, 38, e102478.	3.5	2
260	Function of Ion Channels and Cytosolic Ca2+ in the Mediation of Higher Plant Cell Ion Transport. , 1990, , 103-116.		1
261	Molecular Mechanisms that Control Plant Tolerance to Heavy Metals and Possible Roles in Manipulating Metal Accumulation. , 2002, , .		1
262	Expression of an Outward-Rectifying Potassium Channel from Maize mRNA and Complementary RNA in Xenopus Oocytes. Plant Cell, 1992, 4, 961.	3.1	0
263	Excitation in Plant Membrane Biology. Plant Cell, 1992, 4, 1180.	3.1	0
264	Molecular Mechanisms Of Drought Resistance and Advances On Plant Genes For Clean Up Of Heavy Metals. Nature Biotechnology, 1999, 17, 36-36.	9.4	0
265	Plant transporters and channels. FEBS Letters, 2007, 581, 2203-2203.	1.3	0
266	Crosstalk in Ca2+ Signaling Pathways. , 0, , 59-95.		0
267	Spotlight on… Julian Schroeder. FEBS Letters, 2010, 584, 2963-2964.	1.3	0
268	Identification and characterization of SaeIF1 from the eukaryotic translation factor SUI1 family in cadmium hyperaccumulator Sedum alfredii. Planta, 2021, 253, 12.	1.6	0
269	Exploring CO2 permeability of plant aquaporins. FASEB Journal, 2012, 26, 1103.8.	0.2	0